論文の概要: DiffMix: Diffusion Model-based Data Synthesis for Nuclei Segmentation
and Classification in Imbalanced Pathology Image Datasets
- arxiv url: http://arxiv.org/abs/2306.14132v1
- Date: Sun, 25 Jun 2023 05:31:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 16:30:36.005677
- Title: DiffMix: Diffusion Model-based Data Synthesis for Nuclei Segmentation
and Classification in Imbalanced Pathology Image Datasets
- Title(参考訳): DiffMix:不均衡画像データセットにおける核分割と分類のための拡散モデルに基づくデータ合成
- Authors: Hyun-Jic Oh and Won-Ki Jeong
- Abstract要約: 拡散モデルを用いた現実的なデータ合成法を提案する。
トレーニングデータの配布を拡大するために,仮想パッチを2種類生成する。
意味ラベル条件付き拡散モデルを用いて、現実的で高品質な画像サンプルを生成する。
- 参考スコア(独自算出の注目度): 8.590026259176806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nuclei segmentation and classification is a significant process in pathology
image analysis. Deep learning-based approaches have greatly contributed to the
higher accuracy of this task. However, those approaches suffer from the
imbalanced nuclei data composition, which shows lower classification
performance on the rare nuclei class. In this paper, we propose a realistic
data synthesis method using a diffusion model. We generate two types of virtual
patches to enlarge the training data distribution, which is for balancing the
nuclei class variance and for enlarging the chance to look at various nuclei.
After that, we use a semantic-label-conditioned diffusion model to generate
realistic and high-quality image samples. We demonstrate the efficacy of our
method by experiment results on two imbalanced nuclei datasets, improving the
state-of-the-art networks. The experimental results suggest that the proposed
method improves the classification performance of the rare type nuclei
classification, while showing superior segmentation and classification
performance in imbalanced pathology nuclei datasets.
- Abstract(参考訳): 核分割と分類は病理画像解析において重要な過程である。
ディープラーニングに基づくアプローチは、このタスクの高精度化に大きく貢献している。
しかし、これらのアプローチは、希少な核種に対して低い分類性能を示す不均衡核データ組成に悩まされている。
本稿では,拡散モデルを用いた現実的なデータ合成手法を提案する。
我々は2種類の仮想パッチを生成し、トレーニングデータ分布を拡大する。これは、核クラスのばらつきのバランスと、様々な核を見る機会の拡大を目的としている。
その後、セマンティックラベル条件付き拡散モデルを用いて、リアルで高品質な画像サンプルを生成する。
本手法の有効性を2つの不均衡な原子核データセットを用いて実験により実証し,現状のネットワークを改良した。
実験結果から,本手法は特異型核分類の分類性能を向上し,非平衡病理核データセットのセグメンテーションと分類性能に優れることが示唆された。
関連論文リスト
- NucleiMix: Realistic Data Augmentation for Nuclei Instance Segmentation [2.6954348706500766]
NucleiMixは、データセット内のレアタイプの核の数を増やすことで、核種の分布のバランスをとるように設計されている。
第1段階では、希少型核の周囲に類似した候補位置を特定し、希少型核を候補部位に挿入する。
第2フェーズでは、事前訓練された拡散モデルを用いて、レアタイプの核を新しい環境にシームレスに統合するプログレッシブな塗布戦略を採用している。
論文 参考訳(メタデータ) (2024-10-22T04:03:36Z) - Anisotropic Diffusion Probabilistic Model for Imbalanced Image Classification [8.364943466191933]
非平衡画像分類問題に対する異方性拡散確率モデル(ADPM)を提案する。
我々は,データ分布を用いて,前処理中の異なるクラスサンプルの拡散速度を制御し,逆処理におけるデノイザの分類精度を効果的に向上する。
その結果, 異方性拡散モデルにより, ヘッドクラスの精度を維持しつつ, 希少クラスの分類精度が著しく向上することが確認された。
論文 参考訳(メタデータ) (2024-09-22T04:42:52Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z) - Diffusing Gaussian Mixtures for Generating Categorical Data [21.43283907118157]
本稿では,高品質なサンプル生成に着目した拡散モデルに基づく分類データの生成モデルを提案する。
評価手法は、分類データを生成するための異なる生成モデルの能力と限界を強調した。
論文 参考訳(メタデータ) (2023-03-08T14:55:32Z) - Cryo-shift: Reducing domain shift in cryo-electron subtomograms with
unsupervised domain adaptation and randomization [17.921052986098946]
サブトモグラムの分類と認識は、マクロ分子構造の体系的な回復の第一段階である。
教師付き深層学習法は, サブトモグラム分類において, 精度が高く, 効率的であることが証明されている。
我々は、ディープラーニングに基づくクロスドメインサブトモグラム分類のための、完全に教師なしのドメイン適応およびランダム化フレームワークであるCryo-Shiftを提案する。
論文 参考訳(メタデータ) (2021-11-17T13:43:36Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。