論文の概要: NucleiMix: Realistic Data Augmentation for Nuclei Instance Segmentation
- arxiv url: http://arxiv.org/abs/2410.16671v1
- Date: Tue, 22 Oct 2024 04:03:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:41.325949
- Title: NucleiMix: Realistic Data Augmentation for Nuclei Instance Segmentation
- Title(参考訳): NucleiMix: Nucleiインスタンスセグメンテーションのための現実的なデータ拡張
- Authors: Jiamu Wang, Jin Tae Kwak,
- Abstract要約: NucleiMixは、データセット内のレアタイプの核の数を増やすことで、核種の分布のバランスをとるように設計されている。
第1段階では、希少型核の周囲に類似した候補位置を特定し、希少型核を候補部位に挿入する。
第2フェーズでは、事前訓練された拡散モデルを用いて、レアタイプの核を新しい環境にシームレスに統合するプログレッシブな塗布戦略を採用している。
- 参考スコア(独自算出の注目度): 2.6954348706500766
- License:
- Abstract: Nuclei instance segmentation is an essential task in pathology image analysis, serving as the foundation for many downstream applications. The release of several public datasets has significantly advanced research in this area, yet many existing methods struggle with data imbalance issues. To address this challenge, this study introduces a data augmentation method, called NucleiMix, which is designed to balance the distribution of nuclei types by increasing the number of rare-type nuclei within datasets. NucleiMix operates in two phases. In the first phase, it identifies candidate locations similar to the surroundings of rare-type nuclei and inserts rare-type nuclei into the candidate locations. In the second phase, it employs a progressive inpainting strategy using a pre-trained diffusion model to seamlessly integrate rare-type nuclei into their new environments in replacement of major-type nuclei or background locations. We systematically evaluate the effectiveness of NucleiMix on three public datasets using two popular nuclei instance segmentation models. The results demonstrate the superior ability of NucleiMix to synthesize realistic rare-type nuclei and to enhance the quality of nuclei segmentation and classification in an accurate and robust manner.
- Abstract(参考訳): Nucleiインスタンスのセグメンテーションは、多くの下流アプリケーションの基礎となる、病理画像解析において不可欠なタスクである。
いくつかの公開データセットのリリースはこの領域でかなり先進的な研究がなされているが、既存の多くの手法ではデータ不均衡の問題に悩まされている。
この課題に対処するため,本研究ではNucliMixと呼ばれるデータ拡張手法を導入する。
NucleiMixは2つのフェーズで動作する。
第1段階では、希少型核の周囲に類似した候補位置を特定し、希少型核を候補部位に挿入する。
第2段階では、事前訓練された拡散モデルを用いて進行的な塗布戦略を用いて、希少型核を新しい環境にシームレスに統合し、主要な型核や背景位置を置き換える。
我々は,NucliMixの3つの公開データセットに対する有効性について,2つの一般的な核インスタンスセグメンテーションモデルを用いて体系的に評価した。
以上の結果から,NucliMixが現実的なレアタイプの核を合成し,核のセグメンテーションと分類の質を正確かつロバストに向上する能力を示した。
関連論文リスト
- Controllable and Efficient Multi-Class Pathology Nuclei Data Augmentation using Text-Conditioned Diffusion Models [4.1326413814647545]
テキスト条件拡散モデルを用いたマルチクラス核データ拡張のための新しい2段階フレームワークを提案する。
第一段階では,マルチクラスセマンティックラベルを生成することにより,核ラベルの合成を革新する。
第2段階では、セマンティックおよびテキスト条件の潜在拡散モデルを用いて、高品質な病理像を効率よく生成する。
論文 参考訳(メタデータ) (2024-07-19T15:53:44Z) - BoNuS: Boundary Mining for Nuclei Segmentation with Partial Point Labels [34.57288003249214]
本稿では,核の部分点ラベルのみを必要とする弱制御型核分割法を提案する。
具体的には,核内部情報と境界情報とを同時に学習するBoNuSという,核セグメンテーションのための新しい境界地雷フレームワークを提案する。
形態学的な知識で欠落した核を検出するためのカリキュラム学習を備えた核検出モジュールについて検討する。
論文 参考訳(メタデータ) (2024-01-15T02:50:39Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Prompt-based Grouping Transformer for Nucleus Detection and
Classification [70.55961378096116]
核の検出と分類は、疾患の診断に有効な情報を生み出す。
既存のほとんどの手法は、核を独立に分類するか、核とそのグループの特徴の間の意味的類似性を十分に利用しない。
グループ変換器をベースとした新しいエンドツーエンドの原子核検出・分類フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-22T04:50:48Z) - DiffMix: Diffusion Model-based Data Synthesis for Nuclei Segmentation
and Classification in Imbalanced Pathology Image Datasets [8.590026259176806]
拡散モデルを用いた現実的なデータ合成法を提案する。
トレーニングデータの配布を拡大するために,仮想パッチを2種類生成する。
意味ラベル条件付き拡散モデルを用いて、現実的で高品質な画像サンプルを生成する。
論文 参考訳(メタデータ) (2023-06-25T05:31:08Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
ほとんどのニューラルネットワークに基づく手法は、局所的な畳み込みの受容領域に影響を受けている。
本稿では,核輪郭を順にサンプリングした点列に変換する新しい多角構造特徴学習機構を提案する。
次に、核をノードとするグラフ構造に組織像を変換し、その表現に核の空間分布を埋め込むグラフニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2023-02-22T14:52:06Z) - GradMix for nuclei segmentation and classification in imbalanced
pathology image datasets [2.2780974560958]
現在のディープラーニングベースのアプローチでは、病理学者による大量の注釈付きデータセットが必要となる。
既存のデータセットは、一般に異なる種類の核の間で不均衡であり、性能が著しく低下する。
本研究では, 原子核分割と分類に特化して設計されたGradMixと呼ばれる, 単純だが効果的なデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T03:54:46Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
ヘマトキシリンおよびエオシン染色組織学データから核を同時に検出し,分画し,分類する新しい手法を考案し,その設計を行った。
本研究は,19種類の組織にまたがる核分割と分類のための提案手法の優れた性能を実証する。
論文 参考訳(メタデータ) (2021-11-01T08:29:40Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
重なり合う核を正確に分離するために、曲げ損失正規化器を備えた新しいマルチタスク学習ネットワークを提案する。
新たに提案されたマルチタスク学習アーキテクチャは、3つのタスクから共有表現を学習することで一般化を促進する。
提案した曲げ損失は,輪郭点を大きな曲率で囲むために高いペナルティを定義し,小さな曲率で凸輪郭点に小さなペナルティを適用した。
論文 参考訳(メタデータ) (2021-09-30T17:29:44Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。