Time evolution operator for a $\left\{ h(1) \oplus h(1) \right\} \uplus
u(2)$ time-dependent quantum Hamiltonian; a self-consistent resolution method
based on Feynman's disentangling rules
- URL: http://arxiv.org/abs/2306.14231v3
- Date: Wed, 19 Jul 2023 10:25:32 GMT
- Title: Time evolution operator for a $\left\{ h(1) \oplus h(1) \right\} \uplus
u(2)$ time-dependent quantum Hamiltonian; a self-consistent resolution method
based on Feynman's disentangling rules
- Authors: Nibaldo-Edmundo Alvarez-Moraga
- Abstract summary: It is shown that all the problem reduces to solve a complex Riccati-type differential equation.
Some closed solutions to this differential equation are found and then concrete disentangling expressions for the time-ordered evolution operator are given.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article the time evolution operator of two interacting quantum
oscillators, whose Hamiltonian is an element of the complex $\left\{ h(1)
\oplus h(1) \right\} \uplus u(2)$ algebra, is analyzed using the Feynman time
ordering operator techniques. This method is consistently used to generate the
conditions and to formally find explicit disentangled expressions for such
operator. In this way, it is shown that all the problem reduces to solve a
complex Riccati-type differential equation. Some closed solutions to this
differential equation are found and then concrete disentangling expressions for
the time-ordered evolution operator are given. Finally, the time evolution of
the coherent states linked to the isotropic 2D quantum oscillator are analyzed
under alternative time-independent an time-dependent Hamiltonian systems.
Related papers
- Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - Simple and general unitarity conserving numerical real time propagators
of time dependent Schr\"odinger equation based on Magnus expansion [0.0]
Magnus expansion provides a way to expand the real time propagator of a time dependent Hamiltonian within the exponential that the unitarity is satisfied at any order.
We derive approximations that preserve unitarity for the differential time evolution operators of general time dependent Hamiltonians.
arXiv Detail & Related papers (2023-12-02T12:17:25Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Generalized $ \left\{ h (1) \oplus h(1) \right\} \uplus u(2) $
commensurate anisotropic Hamiltoninan and ladder operators; energy spectrum,
eigenstates and associated coherent and squeezed states [0.0]
Several families of generalized Hamiltonian systems are found.
Explicit expressions for the normalized eigenstates of the Hamiltonian and its associated lowering operator are given.
arXiv Detail & Related papers (2023-06-13T16:30:56Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Quantum-based solution of time-dependent complex Riccati equations [0.0]
We show a time-dependent complex Riccati equation (TDCRE) as the solution of the time evolution operator (TEO) of quantum systems.
The inherited symmetries of quantum systems can be recognized by a simple inspection of the TDCRE.
As an application, but also as a consistency test, we compare our solution with the analytic one for the Bloch-Riccati equation.
arXiv Detail & Related papers (2022-09-07T23:52:04Z) - On the two-dimensional time-dependent anisotropic harmonic oscillator in
a magnetic field [0.0]
We have considered a two-dimensional anisotropic harmonic oscillator placed in a time-dependent magnetic field.
An orthonormal basis of the Hilbert space consisting of the eigenvectors of $hatmathcalI$ is obtained.
Separability Criterion for the bipartite coherent states corresponding to our system has been demonstrated.
arXiv Detail & Related papers (2022-06-30T17:19:09Z) - Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions [42.3779227963298]
We provide a framework for encoding time dependent dynamics as time independent systems.
First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system.
Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials.
arXiv Detail & Related papers (2022-03-21T21:29:22Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Perturbative approach for strong and weakly coupled time-dependent
non-Hermitian quantum systems [0.0]
We propose a perturbative approach to determine the time-dependent Dyson map and the metric operator associated with time-dependent non-Hermitian Hamiltonians.
arXiv Detail & Related papers (2020-10-04T15:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.