Attention-Refined Unrolling for Sparse Sequential micro-Doppler
Reconstruction
- URL: http://arxiv.org/abs/2306.14233v2
- Date: Mon, 5 Feb 2024 14:25:03 GMT
- Title: Attention-Refined Unrolling for Sparse Sequential micro-Doppler
Reconstruction
- Authors: Riccardo Mazzieri, Jacopo Pegoraro and Michele Rossi
- Abstract summary: STAR is a neural network that reconstructs micro-Doppler sequences of human movement even from highly incomplete channel measurements.
It substantially outperforms state-of-the-art techniques in terms of the reconstructed micro-Doppler quality.
- Score: 1.1356542363919058
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The reconstruction of micro-Doppler signatures of human movements is a key
enabler for fine-grained activity recognition wireless sensing. In Joint
Communication and Sensing (JCS) systems, unlike in dedicated radar sensing
systems, a suitable trade-off between sensing accuracy and communication
overhead has to be attained. It follows that the micro-Doppler has to be
reconstructed from incomplete windows of channel estimates obtained from
communication packets. Existing approaches exploit compressed sensing, but
produce very poor reconstructions when only a few channel measurements are
available, which is often the case with real communication patterns. In
addition, the large number of iterations they need to converge hinders their
use in real-time systems. In this work, we propose and validate STAR, a neural
network that reconstructs micro-Doppler sequences of human movement even from
highly incomplete channel measurements. STAR is based upon a new architectural
design that combines a single unrolled iterative hard-thresholding layer with
an attention mechanism, used at its output. This results in an interpretable
and lightweight architecture that reaps the benefits of both model-based and
data driven solutions. STAR is evaluated on a public JCS dataset of 60 GHz
channel measurements of human activity traces. Experimental results show that
it substantially outperforms state-of-the-art techniques in terms of the
reconstructed micro-Doppler quality. Remarkably, STAR enables human activity
recognition with satisfactory accuracy even with 90% of missing channel
measurements, for which existing techniques fail.
Related papers
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - MDPose: Human Skeletal Motion Reconstruction Using WiFi Micro-Doppler
Signatures [4.92674421365689]
We propose MDPose, a novel framework for human skeletal motion reconstruction based on WiFi micro-Doppler signatures.
It provides an effective solution to track human activities by reconstructing a skeleton model with 17 key points.
MDPose outperforms state-of-the-art RF-based pose estimation systems.
arXiv Detail & Related papers (2022-01-11T21:46:28Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - End-to-end Learning for OFDM: From Neural Receivers to Pilotless
Communication [12.325545487629297]
We explore the gains of end-to-end learning over a frequency- and time-selective fading channel.
With imperfect channel knowledge at the receiver, the shaping gains observed on AWGN channels vanish.
We identify two other sources of performance improvements.
arXiv Detail & Related papers (2020-09-11T07:33:00Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.