論文の概要: Comparing Causal Frameworks: Potential Outcomes, Structural Models,
Graphs, and Abstractions
- arxiv url: http://arxiv.org/abs/2306.14351v2
- Date: Mon, 6 Nov 2023 23:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 19:17:38.686191
- Title: Comparing Causal Frameworks: Potential Outcomes, Structural Models,
Graphs, and Abstractions
- Title(参考訳): 因果フレームワークの比較: 潜在的な結果、構造モデル、グラフ、抽象化
- Authors: Duligur Ibeling, Thomas Icard
- Abstract要約: 本稿では, ルビン因果モデル (RCM) と構造因果モデル (SCM) の関係を明らかにすることを目的とする。
主要な結果は、SCMフレームワークによって暗示される代数的原則に違反しているものを含む全てのRCMが、表現可能なRCMの抽象化として現れることを示している。
- 参考スコア(独自算出の注目度): 10.889531739861562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this paper is to make clear and precise the relationship between
the Rubin causal model (RCM) and structural causal model (SCM) frameworks for
causal inference. Adopting a neutral logical perspective, and drawing on
previous work, we show what is required for an RCM to be representable by an
SCM. A key result then shows that every RCM -- including those that violate
algebraic principles implied by the SCM framework -- emerges as an abstraction
of some representable RCM. Finally, we illustrate the power of this
conciliatory perspective by pinpointing an important role for SCM principles in
classic applications of RCMs; conversely, we offer a characterization of the
algebraic constraints implied by a graph, helping to substantiate further
comparisons between the two frameworks.
- Abstract(参考訳): 本稿では,ルービン因果モデル (RCM) と構造因果モデル (SCM) の因果推論における関係を明確かつ正確にすることを目的とする。
中立的な論理的視点を採用し、それ以前の作業に基づいて、RCMがSCMで表現できることに必要なものを示す。
主要な結果は、SCMフレームワークによって暗示される代数的原則に違反しているものを含む全てのRCMが、表現可能なRCMの抽象化として現れることを示している。
最後に,RCM の古典的応用において,SCM の原理に重要な役割を果たすことによって,この和解的視点の力を説明する。
関連論文リスト
- Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
本稿では,Top-K Pairwise Ranking(TKPR)という新しい尺度を提案する。
一連の分析により、TKPRは既存のランキングベースの尺度と互換性があることが示されている。
一方,データ依存縮約法という新しい手法に基づいて,提案手法の急激な一般化を確立する。
論文 参考訳(メタデータ) (2024-07-09T09:36:37Z) - Distribution-consistency Structural Causal Models [6.276417011421679]
我々は,新しいテクスト分布-一貫性仮定を導入し,それに合わせて分布-一貫性構造因果モデル(DiscoSCM)を提案する。
モデルキャパシティの強化を具体化するために,DiscoSCM単独で実用的重要性を有する新たな因果パラメータ,一貫性のテキスト化(textitthe probability of consistency)を導入する。
論文 参考訳(メタデータ) (2024-01-29T06:46:15Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - Causality is all you need [63.10680366545293]
因果グラフルーティング(Causal Graph Routing, CGR)は、データに隠された原因影響力を明らかにするための介入機構を完全に依存した統合因果スキームである。
CGRは、Visual Question AnswerとLong Document Classificationタスクの両方において、最先端のメソッドを超越することができる。
論文 参考訳(メタデータ) (2023-11-21T02:53:40Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Jointly Learning Consistent Causal Abstractions Over Multiple
Interventional Distributions [8.767175335575386]
抽象化は、同じシステムを表す2つの構造因果モデルを異なる解像度で関連付けるために使用できる。
リシェルが最近提案した抽象化の形式化に基づく,SCM間の因果的抽象化学習のための第1のフレームワークを紹介する。
論文 参考訳(メタデータ) (2023-01-14T11:22:16Z) - On the Complexity of Counterfactual Reasoning [9.614694312155795]
本研究は, 完全特定SCM上での協調的・介入的推論に比較して, 対実的推論は困難ではないことを示す。
我々は、結果を2つ以上の世界を考える必要がある一般的な反事実的推論にまで拡張する。
論文 参考訳(メタデータ) (2022-11-24T07:28:17Z) - A Principled Design of Image Representation: Towards Forensic Tasks [75.40968680537544]
本稿では, 理論, 実装, 応用の観点から, 法科学指向の画像表現を別の問題として検討する。
理論レベルでは、Dense Invariant Representation (DIR)と呼ばれる、数学的保証を伴う安定した記述を特徴とする、新しい法医学の表現フレームワークを提案する。
本稿では, ドメインパターンの検出とマッチング実験について, 最先端の記述子との比較結果を提供する。
論文 参考訳(メタデータ) (2022-03-02T07:46:52Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
コモンセンス因果推論(Commonsense causality reasoning)は、平均的な人によって妥当と見なされる自然言語記述における妥当な原因と影響を特定することを目的としている。
既存の作業は通常、深い言語モデルに全面的に依存しており、共起を混同する可能性がある。
古典的因果原理に触発され,我々はCCRの中心的問題を明確にし,観察研究と自然言語における人間の対象間の類似性を引き出す。
本稿では,時間信号をインシデント・インシデント・インシデント・インシデント・インシデントとして活用する新しいフレームワークであるROCKをReason O(A)bout Commonsense K(C)ausalityに提案する。
論文 参考訳(メタデータ) (2022-01-31T06:12:39Z) - Relating Graph Neural Networks to Structural Causal Models [17.276657786213015]
因果関係は、興味のある変数とその力学関係に関する情報を伝達する構造因果モデル(SCM)によって記述することができる。
本稿では,GNNとSCMの新たな接続を確立する理論解析について述べる。
次に、GNNに基づく因果推論のための新しいモデルクラスを構築し、因果効果の同定に十分である。
論文 参考訳(メタデータ) (2021-09-09T11:16:31Z) - A Topological Perspective on Causal Inference [10.965065178451104]
仮定のない因果推論は、構造因果モデルの単なる集合においてのみ可能であることを示す。
以上の結果から,有効な因果推論を行うのに十分な帰納的仮定は,原理上は統計的に検証できないことが示唆された。
我々のトポロジカルアプローチのさらなる利点は、無限に多くの変数を持つSCMに容易に対応できることである。
論文 参考訳(メタデータ) (2021-07-18T23:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。