Comparing Causal Frameworks: Potential Outcomes, Structural Models,
Graphs, and Abstractions
- URL: http://arxiv.org/abs/2306.14351v2
- Date: Mon, 6 Nov 2023 23:03:16 GMT
- Title: Comparing Causal Frameworks: Potential Outcomes, Structural Models,
Graphs, and Abstractions
- Authors: Duligur Ibeling, Thomas Icard
- Abstract summary: The aim of this paper is to make clear and precise the relationship between the Rubin causal model (RCM) and structural causal model (SCM)
A key result then shows that every RCM -- including those that violate algebraic principles implied by the SCM framework -- emerges as an abstraction of some representable RCM.
- Score: 10.889531739861562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this paper is to make clear and precise the relationship between
the Rubin causal model (RCM) and structural causal model (SCM) frameworks for
causal inference. Adopting a neutral logical perspective, and drawing on
previous work, we show what is required for an RCM to be representable by an
SCM. A key result then shows that every RCM -- including those that violate
algebraic principles implied by the SCM framework -- emerges as an abstraction
of some representable RCM. Finally, we illustrate the power of this
conciliatory perspective by pinpointing an important role for SCM principles in
classic applications of RCMs; conversely, we offer a characterization of the
algebraic constraints implied by a graph, helping to substantiate further
comparisons between the two frameworks.
Related papers
- Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - Distribution-consistency Structural Causal Models [6.276417011421679]
We introduce a novel textitdistribution-consistency assumption, and in alignment with it, we propose the Distribution-consistency Structural Causal Models (DiscoSCMs)
To concretely reveal the enhanced model capacity, we introduce a new identifiable causal parameter, textitthe probability of consistency, which holds practical significance within DiscoSCM alone.
arXiv Detail & Related papers (2024-01-29T06:46:15Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Causality is all you need [63.10680366545293]
Causal Graph Routing (CGR) is an integrated causal scheme relying entirely on the intervention mechanisms to reveal the cause-effect forces hidden in data.
CGR can surpass the current state-of-the-art methods on both Visual Question Answer and Long Document Classification tasks.
arXiv Detail & Related papers (2023-11-21T02:53:40Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Jointly Learning Consistent Causal Abstractions Over Multiple
Interventional Distributions [8.767175335575386]
An abstraction can be used to relate two structural causal models representing the same system at different levels of resolution.
We introduce a first framework for causal abstraction learning between SCMs based on the formalization of abstraction recently proposed by Rischel.
arXiv Detail & Related papers (2023-01-14T11:22:16Z) - On the Complexity of Counterfactual Reasoning [9.614694312155795]
We show that counterfactual reasoning is no harder than associational or interventional reasoning on fully specified SCMs.
We extend our results to general counterfactual reasoning that requires contemplating more than two worlds.
arXiv Detail & Related papers (2022-11-24T07:28:17Z) - A Principled Design of Image Representation: Towards Forensic Tasks [75.40968680537544]
We investigate the forensic-oriented image representation as a distinct problem, from the perspectives of theory, implementation, and application.
At the theoretical level, we propose a new representation framework for forensics, called Dense Invariant Representation (DIR), which is characterized by stable description with mathematical guarantees.
We demonstrate the above arguments on the dense-domain pattern detection and matching experiments, providing comparison results with state-of-the-art descriptors.
arXiv Detail & Related papers (2022-03-02T07:46:52Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
Commonsense causality reasoning aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person.
Existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences.
Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages.
We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision.
arXiv Detail & Related papers (2022-01-31T06:12:39Z) - Relating Graph Neural Networks to Structural Causal Models [17.276657786213015]
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations.
We present a theoretical analysis that establishes a novel connection between GNN and SCM.
We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification.
arXiv Detail & Related papers (2021-09-09T11:16:31Z) - A Topological Perspective on Causal Inference [10.965065178451104]
We show that substantive assumption-free causal inference is possible only in a meager set of structural causal models.
Our results show that inductive assumptions sufficient to license valid causal inferences are statistically unverifiable in principle.
An additional benefit of our topological approach is that it easily accommodates SCMs with infinitely many variables.
arXiv Detail & Related papers (2021-07-18T23:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.