Distribution-consistency Structural Causal Models
- URL: http://arxiv.org/abs/2401.15911v3
- Date: Sat, 23 Mar 2024 02:15:31 GMT
- Title: Distribution-consistency Structural Causal Models
- Authors: Heyang Gong, Chaochao Lu, Yu Zhang,
- Abstract summary: We introduce a novel textitdistribution-consistency assumption, and in alignment with it, we propose the Distribution-consistency Structural Causal Models (DiscoSCMs)
To concretely reveal the enhanced model capacity, we introduce a new identifiable causal parameter, textitthe probability of consistency, which holds practical significance within DiscoSCM alone.
- Score: 6.276417011421679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of causal modeling, potential outcomes (PO) and structural causal models (SCMs) stand as the predominant frameworks. However, these frameworks face notable challenges in practically modeling counterfactuals, formalized as parameters of the joint distribution of potential outcomes. Counterfactual reasoning holds paramount importance in contemporary decision-making processes, especially in scenarios that demand personalized incentives based on the joint values of $(Y(0), Y(1))$. This paper begins with an investigation of the PO and SCM frameworks for modeling counterfactuals. Through the analysis, we identify an inherent model capacity limitation, termed as the ``degenerative counterfactual problem'', emerging from the consistency rule that is the cornerstone of both frameworks. To address this limitation, we introduce a novel \textit{distribution-consistency} assumption, and in alignment with it, we propose the Distribution-consistency Structural Causal Models (DiscoSCMs) offering enhanced capabilities to model counterfactuals. To concretely reveal the enhanced model capacity, we introduce a new identifiable causal parameter, \textit{the probability of consistency}, which holds practical significance within DiscoSCM alone, showcased with a personalized incentive example. Furthermore, we provide a comprehensive set of theoretical results about the ``Ladder of Causation'' within the DiscoSCM framework. We hope it opens new avenues for future research of counterfactual modeling, ultimately enhancing our understanding of causality and its real-world applications.
Related papers
- Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - The Essential Role of Causality in Foundation World Models for Embodied AI [102.75402420915965]
Embodied AI agents will require the ability to perform new tasks in many different real-world environments.
Current foundation models fail to accurately model physical interactions and are therefore insufficient for Embodied AI.
The study of causality lends itself to the construction of veridical world models.
arXiv Detail & Related papers (2024-02-06T17:15:33Z) - Answering Causal Queries at Layer 3 with DiscoSCMs-Embracing
Heterogeneity [0.0]
This paper advocates for the Distribution-consistency Structural Causal Models (DiscoSCM) framework as a pioneering approach to counterfactual inference.
arXiv Detail & Related papers (2023-09-17T17:01:05Z) - High Fidelity Image Counterfactuals with Probabilistic Causal Models [25.87025672100077]
We present a causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models.
We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models.
arXiv Detail & Related papers (2023-06-27T19:28:41Z) - Comparing Causal Frameworks: Potential Outcomes, Structural Models,
Graphs, and Abstractions [10.889531739861562]
The aim of this paper is to make clear and precise the relationship between the Rubin causal model (RCM) and structural causal model (SCM)
A key result then shows that every RCM -- including those that violate algebraic principles implied by the SCM framework -- emerges as an abstraction of some representable RCM.
arXiv Detail & Related papers (2023-06-25T21:57:20Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
This paper proposes a framework that expands the potential of data-driven approaches for DCM.
It includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment.
A case study demonstrates the potential of this framework for discrete choice analysis.
arXiv Detail & Related papers (2023-05-30T12:53:55Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models.
We develop a conversation cognitive model ( CCM) that explains how each utterance receives and activates channels of information.
By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds.
arXiv Detail & Related papers (2023-05-28T13:54:09Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.