Synthetic Alone: Exploring the Dark Side of Synthetic Data for
Grammatical Error Correction
- URL: http://arxiv.org/abs/2306.14377v1
- Date: Mon, 26 Jun 2023 01:40:28 GMT
- Title: Synthetic Alone: Exploring the Dark Side of Synthetic Data for
Grammatical Error Correction
- Authors: Chanjun Park, Seonmin Koo, Seolhwa Lee, Jaehyung Seo, Sugyeong Eo,
Hyeonseok Moon, Heuiseok Lim
- Abstract summary: Data-centric AI approach aims to enhance the model performance without modifying the model.
Data quality control method has a positive impact on models trained with real-world data.
A negative impact is observed in models trained solely on synthetic data.
- Score: 5.586798679167892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-centric AI approach aims to enhance the model performance without
modifying the model and has been shown to impact model performance positively.
While recent attention has been given to data-centric AI based on synthetic
data, due to its potential for performance improvement, data-centric AI has
long been exclusively validated using real-world data and publicly available
benchmark datasets. In respect of this, data-centric AI still highly depends on
real-world data, and the verification of models using synthetic data has not
yet been thoroughly carried out. Given the challenges above, we ask the
question: Does data quality control (noise injection and balanced data), a
data-centric AI methodology acclaimed to have a positive impact, exhibit the
same positive impact in models trained solely with synthetic data? To address
this question, we conducted comparative analyses between models trained on
synthetic and real-world data based on grammatical error correction (GEC) task.
Our experimental results reveal that the data quality control method has a
positive impact on models trained with real-world data, as previously reported
in existing studies, while a negative impact is observed in models trained
solely on synthetic data.
Related papers
- Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification [7.357494019212501]
We propose efficient weighted-loss approaches to align synthetic data with real-world distribution.
We empirically assessed the effectiveness of our method on multiple text classification tasks.
arXiv Detail & Related papers (2024-10-28T20:53:49Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
We investigate the equivalency of synthetic data to real-world data, the substitutability of synthetic data for real data, and the flexibility of synthetic data generators.
Our results suggest that synthetic data not only enhances model performance but also demonstrates substitutability for real data, with 60% to 80% replacement without performance loss.
arXiv Detail & Related papers (2024-03-24T17:21:32Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models.
We study the effects of differentially private synthetic data generation on classification.
arXiv Detail & Related papers (2021-06-15T21:00:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.