Deep Bayesian Experimental Design for Quantum Many-Body Systems
- URL: http://arxiv.org/abs/2306.14510v1
- Date: Mon, 26 Jun 2023 08:40:14 GMT
- Title: Deep Bayesian Experimental Design for Quantum Many-Body Systems
- Authors: Leopoldo Sarra, Florian Marquardt
- Abstract summary: We show how this approach holds promise for adaptive measurement strategies to characterize present-day quantum technology platforms.
In particular, we focus on arrays of coupled cavities and qubit arrays.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian experimental design is a technique that allows to efficiently select
measurements to characterize a physical system by maximizing the expected
information gain. Recent developments in deep neural networks and normalizing
flows allow for a more efficient approximation of the posterior and thus the
extension of this technique to complex high-dimensional situations. In this
paper, we show how this approach holds promise for adaptive measurement
strategies to characterize present-day quantum technology platforms. In
particular, we focus on arrays of coupled cavities and qubit arrays. Both
represent model systems of high relevance for modern applications, like quantum
simulations and computing, and both have been realized in platforms where
measurement and control can be exploited to characterize and counteract
unavoidable disorder. Thus, they represent ideal targets for applications of
Bayesian experimental design.
Related papers
- Quantum consistent neural/tensor networks for photonic circuits with strongly/weakly entangled states [0.0]
We propose an approach to approximate the exact unitary evolution of closed entangled systems in a precise, efficient and quantum consistent manner.
By training the networks with a reasonably small number of examples of quantum dynamics, we enable efficient parameter estimation in larger Hilbert spaces.
arXiv Detail & Related papers (2024-06-03T09:51:25Z) - Applications of model-aware reinforcement learning in Bayesian quantum
metrology [0.6138671548064355]
In Belliardo et al., arXiv:2312.16985 (2023), we introduced a procedure capable of optimizing a wide range of tasks in quantum metrology and estimation.
We take a model-based approach to the optimisation where the physics describing the system is explicitly taken into account in the training.
This exposition showcases the broad applicability of the method, which has been implemented in the qsensoropt library released on PyPI.
arXiv Detail & Related papers (2024-03-08T22:48:07Z) - Designing variational ansatz for quantum-enabled simulation of
non-unitary dynamical evolution -- an excursion into Dicke supperradiance [7.977318221782395]
We employ the unrestricted vectorization variant of AVQD to simulate and benchmark various non-unitarily evolving systems.
We show an efficient decomposition scheme for the ansatz used, which can extend its applications to a wide range of other open quantum system scenarios.
Our successful demonstrations pave the way for utilizing this adaptive variational technique to study complex systems in chemistry and physics.
arXiv Detail & Related papers (2024-03-07T16:57:24Z) - Model-aware reinforcement learning for high-performance Bayesian
experimental design in quantum metrology [0.5461938536945721]
Quantum sensors offer control flexibility during estimation by allowing manipulation by the experimenter across various parameters.
We introduce a versatile procedure capable of optimizing a wide range of problems in quantum metrology, estimation, and hypothesis testing.
We combine model-aware reinforcement learning (RL) with Bayesian estimation based on particle filtering.
arXiv Detail & Related papers (2023-12-28T12:04:15Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Deep reinforcement learning for quantum multiparameter estimation [0.0]
We introduce a model-free and deep learning-based approach to implement realistic Bayesian quantum metrology tasks.
We prove experimentally the achievement of higher estimation performances than standard methods.
arXiv Detail & Related papers (2022-09-01T18:01:56Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Quadratic mutual information regularization in real-time deep CNN models [51.66271681532262]
Regularization method motivated by the Quadratic Mutual Information is proposed.
Experiments on various binary classification problems are performed, indicating the effectiveness of the proposed models.
arXiv Detail & Related papers (2021-08-26T13:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.