CST-YOLO: A Novel Method for Blood Cell Detection Based on Improved YOLOv7 and CNN-Swin Transformer
- URL: http://arxiv.org/abs/2306.14590v2
- Date: Fri, 04 Oct 2024 18:21:44 GMT
- Title: CST-YOLO: A Novel Method for Blood Cell Detection Based on Improved YOLOv7 and CNN-Swin Transformer
- Authors: Ming Kang, Chee-Ming Ting, Fung Fung Ting, Raphaƫl Phan,
- Abstract summary: Blood cell detection is a typical small-scale object detection problem in computer vision.
We propose a CST-YOLO model for blood cell detection based on YOLOv7 architecture and enhance it with the CNN-Swin Transformer (CST)
Experimental results show that the proposed CST-YOLO achieves 92.7%, 95.6%, and 91.1% mAP@0.5, respectively.
- Score: 3.8952128960495638
- License:
- Abstract: Blood cell detection is a typical small-scale object detection problem in computer vision. In this paper, we propose a CST-YOLO model for blood cell detection based on YOLOv7 architecture and enhance it with the CNN-Swin Transformer (CST), which is a new attempt at CNN-Transformer fusion. We also introduce three other useful modules: Weighted Efficient Layer Aggregation Networks (W-ELAN), Multiscale Channel Split (MCS), and Concatenate Convolutional Layers (CatConv) in our CST-YOLO to improve small-scale object detection precision. Experimental results show that the proposed CST-YOLO achieves 92.7%, 95.6%, and 91.1% mAP@0.5, respectively, on three blood cell datasets, outperforming state-of-the-art object detectors, e.g., RT-DETR, YOLOv5, and YOLOv7. Our code is available at https://github.com/mkang315/CST-YOLO.
Related papers
- SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis [0.0]
We develop a novel SCC-YOLO architecture by integrating the SCConv attention mechanism into YOLOv9.
SCC-YOLO has reached state-of-the-art performance in brain tumor detection.
arXiv Detail & Related papers (2025-01-07T14:45:39Z) - Spatial Transformer Network YOLO Model for Agricultural Object Detection [0.3124884279860061]
We propose a new method that integrates spatial transformer networks (STNs) into YOLO to improve performance.
The proposed STN-YOLO aims to enhance the model's effectiveness by focusing on important areas of the image.
We apply the STN-YOLO on benchmark datasets for Agricultural object detection as well as a new dataset from a state-of-the-art plant phenotyping greenhouse facility.
arXiv Detail & Related papers (2024-07-31T14:53:41Z) - LW-DETR: A Transformer Replacement to YOLO for Real-Time Detection [63.780355815743135]
We present a light-weight detection transformer, LW-DETR, which outperforms YOLOs for real-time object detection.
The architecture is a simple stack of a ViT encoder, a projector, and a shallow DETR decoder.
arXiv Detail & Related papers (2024-06-05T17:07:24Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor
Detection [7.798672884591179]
We propose a novel YOLO architecture based on channel Shuffle (RCS-YOLO)
Experimental results on the brain tumor dataset Br35H show that the proposed model surpasses YOLOv6, YOLOv7, and YOLOv8 in speed and accuracy.
Our proposed RCS-YOLO achieves state-of-the-art performance on the brain tumor detection task.
arXiv Detail & Related papers (2023-07-31T05:38:17Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - TE-YOLOF: Tiny and efficient YOLOF for blood cell detection [26.463853328783962]
Blood cell detection in microscopic images is an essential branch of medical image processing research.
In this work, an object detector based on YOLOF has been proposed to detect blood cell objects such as red blood cells, white blood cells and platelets.
For increasing efficiency and flexibility, the EfficientNet Convolutional Neural Network is utilized as the backbone for the proposed object detector.
arXiv Detail & Related papers (2021-08-27T14:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.