Leveraging Locality and Robustness to Achieve Massively Scalable
Gaussian Process Regression
- URL: http://arxiv.org/abs/2306.14731v2
- Date: Wed, 27 Dec 2023 16:17:27 GMT
- Title: Leveraging Locality and Robustness to Achieve Massively Scalable
Gaussian Process Regression
- Authors: Robert Allison, Anthony Stephenson, Samuel F, Edward Pyzer-Knapp
- Abstract summary: We introduce a new perspective by exploring robustness properties and limiting behaviour of GP nearest-neighbour (GPnn) prediction.
As the data-size n increases, accuracy of estimated parameters and GP model assumptions become increasingly irrelevant to GPnn predictive accuracy.
We show that this source of inaccuracy can be corrected for, thereby achieving both well-calibrated uncertainty measures and accurate predictions at remarkably low computational cost.
- Score: 1.3518297878940662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate predictions and principled uncertainty measures provided by GP
regression incur O(n^3) cost which is prohibitive for modern-day large-scale
applications. This has motivated extensive work on computationally efficient
approximations. We introduce a new perspective by exploring robustness
properties and limiting behaviour of GP nearest-neighbour (GPnn) prediction. We
demonstrate through theory and simulation that as the data-size n increases,
accuracy of estimated parameters and GP model assumptions become increasingly
irrelevant to GPnn predictive accuracy. Consequently, it is sufficient to spend
small amounts of work on parameter estimation in order to achieve high MSE
accuracy, even in the presence of gross misspecification. In contrast, as n
tends to infinity, uncertainty calibration and NLL are shown to remain
sensitive to just one parameter, the additive noise-variance; but we show that
this source of inaccuracy can be corrected for, thereby achieving both
well-calibrated uncertainty measures and accurate predictions at remarkably low
computational cost. We exhibit a very simple GPnn regression algorithm with
stand-out performance compared to other state-of-the-art GP approximations as
measured on large UCI datasets. It operates at a small fraction of those other
methods' training costs, for example on a basic laptop taking about 30 seconds
to train on a dataset of size n = 1.6 x 10^6.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
We present a novel algorithm which estimates the smoothness and length-scale parameters in the Matern kernel in order to improve robustness of the resulting prediction uncertainties.
We achieve improved UQ over leave-one-out likelihood while maintaining a high degree of scalability as demonstrated in numerical experiments.
arXiv Detail & Related papers (2022-09-22T19:23:37Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in
High Dimensions [41.7567932118769]
Empirical Risk Minimization algorithms are widely used in a variety of estimation and prediction tasks.
In this paper, we characterize for the first time the fundamental limits on the statistical accuracy of convex ERM for inference.
arXiv Detail & Related papers (2020-06-16T04:27:38Z) - Uncertainty quantification using martingales for misspecified Gaussian
processes [52.22233158357913]
We address uncertainty quantification for Gaussian processes (GPs) under misspecified priors.
We construct a confidence sequence (CS) for the unknown function using martingale techniques.
Our CS is statistically valid and empirically outperforms standard GP methods.
arXiv Detail & Related papers (2020-06-12T17:58:59Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.