STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
- URL: http://arxiv.org/abs/2505.11355v1
- Date: Fri, 16 May 2025 15:18:15 GMT
- Title: STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
- Authors: Simon Urbainczyk, Aretha L. Teckentrup, Jonas Latz,
- Abstract summary: We develop a particle-based expectation expectation training method for deep GP training on large-scale data.<n>We test our method on standard benchmark problems.
- Score: 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes (GPs) have gained popularity as flexible machine learning models for regression and function approximation with an in-built method for uncertainty quantification. However, GPs suffer when the amount of training data is large or when the underlying function contains multi-scale features that are difficult to represent by a stationary kernel. To address the former, training of GPs with large-scale data is often performed through inducing point approximations (also known as sparse GP regression (GPR)), where the size of the covariance matrices in GPR is reduced considerably through a greedy search on the data set. To aid the latter, deep GPs have gained traction as hierarchical models that resolve multi-scale features by combining multiple GPs. Posterior inference in deep GPs requires a sampling or, more usual, a variational approximation. Variational approximations lead to large-scale stochastic, non-convex optimisation problems and the resulting approximation tends to represent uncertainty incorrectly. In this work, we combine variational learning with MCMC to develop a particle-based expectation-maximisation method to simultaneously find inducing points within the large-scale data (variationally) and accurately train the GPs (sampling-based). The result is a highly efficient and accurate methodology for deep GP training on large-scale data. We test our method on standard benchmark problems.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
We show that sequential black-box optimization based on GPs can be made efficient by sticking to a candidate solution for multiple evaluation steps.
We modify two well-established GP-Opt algorithms, GP-UCB and GP-EI to adapt rules from batched GP-Opt.
arXiv Detail & Related papers (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Robust Gaussian Process Regression Based on Iterative Trimming [6.912744078749024]
This paper presents a new robust GP regression algorithm that iteratively trims the most extreme data points.
It can greatly improve the model accuracy for contaminated data even in the presence of extreme or abundant outliers.
As a practical example in the astrophysical study, we show that this method can precisely determine the main-sequence ridge line in the color-magnitude diagram of star clusters.
arXiv Detail & Related papers (2020-11-22T16:43:35Z) - Sparse Gaussian Process Variational Autoencoders [24.86751422740643]
Existing approaches for performing inference in GP-DGMs do not support sparse GP approximations based on points.
We develop the sparse Gaussian processal variation autoencoder (GP-VAE) characterised by the use of partial inference networks for parameterising sparse GP approximations.
arXiv Detail & Related papers (2020-10-20T10:19:56Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.