A Quantum Otto Engine with Shortcuts to Thermalization and Adiabaticity
- URL: http://arxiv.org/abs/2306.14847v6
- Date: Sun, 25 Aug 2024 05:17:01 GMT
- Title: A Quantum Otto Engine with Shortcuts to Thermalization and Adiabaticity
- Authors: Ali Pedram, Serhat C. Kadıoğlu, Alkan Kabakçıoğlu, Özgür E. Müstecaplıoğlu,
- Abstract summary: We investigate the energetic advantage of accelerating an Otto engine by use of shortcuts to adiabaticity and to equilibrium.
Applying both type of shortcuts leads to enhanced power and efficiency even after the driving costs are taken into account.
We show that controlling three strokes of the cycle leads to an overall improvement of the performance metrics compared with controlling only the two adiabatic strokes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the energetic advantage of accelerating a quantum harmonic oscillator Otto engine by use of shortcuts to adiabaticity (for the expansion and compression strokes) and to equilibrium (for the hot isochore), by means of counter-diabatic (CD) driving. By comparing various protocols with and without CD driving, we find that, applying both type of shortcuts leads to enhanced power and efficiency even after the driving costs are taken into account. The hybrid protocol not only retains its advantage in the limit cycle, but also recovers engine functionality (i.e. a positive power output) in parameter regimes where an uncontrolled, finite-time Otto cycle fails. We show that controlling three strokes of the cycle leads to an overall improvement of the performance metrics compared with controlling only the two adiabatic strokes. Moreover, we numerically calculate the limit cycle behavior of the engine and show that the engines with accelerated isochoric and adiabatic strokes display a superior power output in this mode of operation.
Related papers
- A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases [0.0]
We study a finite-time quantum Otto engine cycle driven by inter-particle interactions in a weakly interacting Bose gas.
We find that, unlike a uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely as a emphheat engine.
arXiv Detail & Related papers (2024-04-25T09:54:21Z) - Three-dimensional harmonic oscillator as a quantum Otto engine [65.268245109828]
The coupling between the working fluid and the baths is controlled using an external central potential.
The efficiency and power of several realizations of the proposed engine are computed.
arXiv Detail & Related papers (2023-12-06T09:52:53Z) - Advantages of non-Hookean coupling in a measurement-fueled
two-oscillator engine [65.268245109828]
A quantum engine composed of two oscillators with a non-Hookean coupling is proposed.
Unlike the more common quantum heat engines, the setup introduced here does not require heat baths as the energy for the operation originates from measurements.
Numerical simulations are used to demonstrate the measurement-driven fueling, as well as the reduced decoupling energy.
arXiv Detail & Related papers (2023-11-08T04:09:26Z) - The asymmetric Otto engine: frictional effects on performance bounds and
operational modes [0.0]
We show that the Otto cycle under consideration cannot operate as a heat engine in the low-temperature regime.
We analytically characterize the complete phase diagram of the Otto cycle for both driving schemes and highlight the different operational modes of the cycle as a heat engine, refrigerator, accelerator, and heater.
arXiv Detail & Related papers (2023-10-10T10:51:01Z) - Powerful ordered collective heat engines [58.720142291102135]
We introduce a class of engines in which the regime of units operating synchronously can boost the performance.
We show that the interplay between Ising-like interactions and a collective ordered regime is crucial to operate as a heat engine.
arXiv Detail & Related papers (2023-01-16T20:14:19Z) - Nonadiabatic coupled-qubit Otto cycle with bidirectional operation and
efficiency gains [0.0]
We study a quantum Otto cycle that uses a 2-qubit working substance whose Hamiltonian does not commute with itself at different times during unitary strokes.
We investigate how the cycle responds to the loss of quantum adiabaticity when these strokes are operated with a finite duration.
arXiv Detail & Related papers (2022-01-05T15:41:08Z) - Unified trade-off optimization of quantum harmonic Otto engine and
refrigerator [0.0]
We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle.
For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine can be mapped to Feynman's ratchet and pawl model.
arXiv Detail & Related papers (2021-12-20T16:53:02Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Finite-time two-spin quantum Otto engines: shortcuts to adiabaticity vs.
irreversibility [0.0]
We first characterize the parameter regime that the working medium operates as an engine in the adiabatic regime.
We consider finite-time behavior of the engine with and without utilizing a shortcut to adiabaticity technique.
We observe that, for certain parameter regimes, the irreversibility, as measured by the efficiency lags, due to finite-time driving is so low that non-adiabatic engine performs quite close to the adiabatic engine.
arXiv Detail & Related papers (2021-02-23T12:23:50Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.