論文の概要: Beyond Chemical Language: A Multimodal Approach to Enhance Molecular
Property Prediction
- arxiv url: http://arxiv.org/abs/2306.14919v1
- Date: Thu, 22 Jun 2023 13:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-02 13:14:14.433384
- Title: Beyond Chemical Language: A Multimodal Approach to Enhance Molecular
Property Prediction
- Title(参考訳): 化学言語を超えて:分子特性予測のマルチモーダルアプローチ
- Authors: Eduardo Soares, Emilio Vital Brazil, Karen Fiorela Aquino Gutierrez,
Renato Cerqueira, Dan Sanders, Kristin Schmidt, Dmitry Zubarev
- Abstract要約: 本稿では,化学言語表現と物理化学的特徴を組み合わせた分子特性予測のための新しい多モーダル言語モデルを提案する。
提案手法であるMultiMODAL-MOLFORMERは,特定の標的特性に対する直接因果効果に基づいて物理化学的特徴を同定する因果多段階特徴選択法を用いている。
ケミカル言語ベースのMOLFORMERやグラフニューラルネットワークなど,既存の最先端アルゴリズムと比較して,優れた性能を示す。
- 参考スコア(独自算出の注目度): 2.1202329976106924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel multimodal language model approach for predicting
molecular properties by combining chemical language representation with
physicochemical features. Our approach, MULTIMODAL-MOLFORMER, utilizes a causal
multistage feature selection method that identifies physicochemical features
based on their direct causal effect on a specific target property. These causal
features are then integrated with the vector space generated by molecular
embeddings from MOLFORMER. In particular, we employ Mordred descriptors as
physicochemical features and identify the Markov blanket of the target
property, which theoretically contains the most relevant features for accurate
prediction. Our results demonstrate a superior performance of our proposed
approach compared to existing state-of-the-art algorithms, including the
chemical language-based MOLFORMER and graph neural networks, in predicting
complex tasks such as biodegradability and PFAS toxicity estimation. Moreover,
we demonstrate the effectiveness of our feature selection method in reducing
the dimensionality of the Mordred feature space while maintaining or improving
the model's performance. Our approach opens up promising avenues for future
research in molecular property prediction by harnessing the synergistic
potential of both chemical language and physicochemical features, leading to
enhanced performance and advancements in the field.
- Abstract(参考訳): 本稿では,化学言語表現と物理化学的特徴を組み合わせた分子特性予測のための新しい多モーダル言語モデルを提案する。
提案手法であるMultiMODAL-MOLFORMERは,特定の標的特性に対する直接因果効果に基づいて物理化学的特徴を同定する因果多段階特徴選択法を用いる。
これらの因果的特徴は、MOLFORMERの分子埋め込みによって生成されるベクトル空間と統合される。
特に,モルドレッドディスクリプタを物理化学的特徴として用いて,理論的に最も関連性の高い特徴を含むターゲット特性のマルコフブランケットを同定する。
提案手法は, 生分解性やPFAS毒性推定などの複雑なタスクの予測において, 化学言語ベースのMOLFORMERやグラフニューラルネットワークなど, 既存の最先端アルゴリズムと比較して優れた性能を示す。
さらに, モデルの性能を維持し, 改善しつつ, モードレッド特徴空間の次元性を低減するための特徴選択手法の有効性を示す。
提案手法は, 化学言語と物理化学的特徴の相乗的ポテンシャルを活かし, 将来的な分子特性予測研究への有望な道を開き, この分野の性能向上と進歩に繋がる。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
グラフニューラルネットワーク(GNN)の分析能力と大規模言語モデル(LLM)の言語生成・予測能力を利用する多モード融合(MMF)フレームワークを提案する。
本フレームワークは,グラフ構造化データのモデリングにおけるGNNの有効性とLLMのゼロショットおよび少数ショット学習能力を組み合わせることにより,オーバーフィッティングのリスクを低減し,予測の改善を実現する。
論文 参考訳(メタデータ) (2024-08-27T11:10:39Z) - A Gaussian Process Model for Ordinal Data with Applications to Chemoinformatics [0.0]
化学実験の結果を予測するための条件付きガウス過程モデルを提案する。
我々のモデルの新しい側面は、核がスケーリングパラメータを含み、化学空間の要素間の相関の強さを制御することである。
本稿では,化学発見の容易化と化合物の有効性に対する重要な特徴の同定のための遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-16T11:18:32Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
そこで本研究では,戦略的サンプリングを通じて原因・影響関係を識別する能動的学習手法を提案する。
この方法は、より大きな化学空間の最も多くの情報を符号化できるデータセットの最小サブセットを特定する。
その後、同定された因果関係を利用して体系的な介入を行い、モデルがこれまで遭遇していなかった化学空間における設計タスクを最適化する。
論文 参考訳(メタデータ) (2024-04-05T17:15:48Z) - Improving Molecular Properties Prediction Through Latent Space Fusion [9.912768918657354]
本稿では,最先端の化学モデルから導出した潜在空間を組み合わせた多視点手法を提案する。
分子構造をグラフとして表現するMHG-GNNの埋め込みと、化学言語に根ざしたMoLFormerの埋め込みである。
本稿では,既存の最先端手法と比較して,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-20T20:29:32Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
我々は、元の近傍制御された埋め込み文法を拡張して、分子グラフ生成に適用する。
提案手法は, 分子最適化タスクの多種多様さにおいて, 最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-14T05:42:15Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。