論文の概要: Constraining Generative Models for Engineering Design with Negative Data
- arxiv url: http://arxiv.org/abs/2306.15166v2
- Date: Mon, 02 Dec 2024 14:20:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:54:45.384916
- Title: Constraining Generative Models for Engineering Design with Negative Data
- Title(参考訳): 負のデータを用いたエンジニアリング設計のための生成モデルの制約
- Authors: Lyle Regenwetter, Giorgio Giannone, Akash Srivastava, Dan Gutfreund, Faez Ahmed,
- Abstract要約: 本稿では,制約を満たす出力に向けて生成モデルを導くための新しいトレーニング手法を提案する。
我々の負データ生成モデル(NDGM)の定式化は、古典的モデルよりも容易に優れている。
- 参考スコア(独自算出の注目度): 11.432911164773488
- License:
- Abstract: Generative models have recently achieved remarkable success and widespread adoption in society, yet they often struggle to generate realistic and accurate outputs. This challenge extends beyond language and vision into fields like engineering design, where safety-critical engineering standards and non-negotiable physical laws tightly constrain what outputs are considered acceptable. In this work, we introduce a novel training method to guide a generative model toward constraint-satisfying outputs using `negative data' -- examples of what to avoid. Our negative-data generative model (NDGM) formulation easily outperforms classic models, generating 1/6 as many constraint-violating samples using 1/8 as much data in certain problems. It also consistently outperforms other baselines, achieving a balance between constraint satisfaction and distributional similarity that is unsurpassed by any other model in 12 of the 14 problems tested. This widespread superiority is rigorously demonstrated across numerous synthetic tests and real engineering problems, such as ship hull synthesis with hydrodynamic constraints and vehicle design with impact safety constraints. Our benchmarks showcase both the best-in-class performance of our new NDGM formulation and the overall dominance of NDGMs versus classic generative models. We publicly release the code and benchmarks at https://github.com/Lyleregenwetter/NDGMs.
- Abstract(参考訳): 生成モデルは近年、社会において顕著な成功を収め、広く採用されているが、現実的で正確なアウトプットを生み出すのに苦労することが多い。
この課題は、言語やビジョンを超えて、安全クリティカルなエンジニアリング標準や非交渉不可能な物理法則がどのようなアウトプットが受け入れられるかを厳しく制限する、エンジニアリング設計のような分野にも及んでいる。
本研究では,「負のデータ」を用いた制約を満たす出力に対して,生成モデルを誘導する新たなトレーニング手法を提案する。
我々の負データ生成モデル(NDGM)の定式化は古典的モデルよりも容易に優れており、特定の問題において1/8のデータを使用した制約違反サンプルを1/6生成する。
また、他のベースラインよりも一貫して優れており、テストされた14の問題のうち12つのうち、他のモデルでは通過しない制約満足度と分布類似性のバランスを保っている。
この広範な優位性は、多くの合成試験や、流体力学的制約による船体合成、衝突安全制約による車両設計など、実際の工学的な問題で厳格に証明されている。
我々のベンチマークでは、新しいNDGM定式化の最高性能と、NDGMと古典的生成モデルとの総合的な優位性の両方を示している。
コードとベンチマークはhttps://github.com/Lyleregenwetter/NDGMsで公開しています。
関連論文リスト
- Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
原文と修正文のアライメントを利用する補助タスクを提案する。
我々は,各タスクをシーケンス・ツー・シーケンス問題として定式化し,マルチタスク・トレーニングを行う。
トレーニングに使用されるデータセットの順序や、データセット内の個々のインスタンスでさえ、最終的なパフォーマンスに重要な影響を与える可能性があることが分かりました。
論文 参考訳(メタデータ) (2023-11-20T14:50:12Z) - AST: Effective Dataset Distillation through Alignment with Smooth and
High-Quality Expert Trajectories [18.266786462036553]
我々は,Smoothと高品質なエキスパートトラジェクトリによるアライメントのための効果的なDDフレームワークASTを提案する。
さまざまなスケール、サイズ、解像度のデータセットに対して、広範な実験を行います。
論文 参考訳(メタデータ) (2023-10-16T16:13:53Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
このベースラインに対するアウト・オブ・ディストリビューションデータより正確であるモデルは「有効ロバスト性」を示す。
より大規模なデータセットで事前トレーニングされたモデルは、収束時に消滅するトレーニング中に効果的な堅牢性を示す。
本稿では, 最先端システムに効率的なロバスト性を拡張し, 最先端モデルの分布外精度を向上させるためのいくつかの戦略について論じる。
論文 参考訳(メタデータ) (2021-06-30T06:21:42Z) - Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints [16.48824312904122]
我々は変分オートエンコーダやその他の深層生成モデルを学ぶための新しいフレームワークを開発する。
これら2つのコントリビューション -- 予測制約と一貫性制約 -- が,画像分類性能の有望な向上につながることを示す。
論文 参考訳(メタデータ) (2020-12-12T04:18:50Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。