論文の概要: SPDER: Semiperiodic Damping-Enabled Object Representation
- arxiv url: http://arxiv.org/abs/2306.15242v1
- Date: Tue, 27 Jun 2023 06:49:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 14:30:26.800278
- Title: SPDER: Semiperiodic Damping-Enabled Object Representation
- Title(参考訳): SPDER:半周期ダンピング可能なオブジェクト表現
- Authors: Kathan Shah, Chawin Sitawarin
- Abstract要約: 位置埋め込みを自然に学習するために設計されたニューラルネットワークアーキテクチャを提案する。
提案アーキテクチャであるSPDERは,正弦波を線形関数で乗算した活性化関数を用いた単純なアーキテクチャである。
以上の結果から,SPDERはトレーニングを10倍に高速化し,画像表現の最先端よりも1500~50,000倍の損失に収束することが示唆された。
- 参考スコア(独自算出の注目度): 7.4297019016687535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a neural network architecture designed to naturally learn a
positional embedding and overcome the spectral bias towards lower frequencies
faced by conventional implicit neural representation networks. Our proposed
architecture, SPDER, is a simple MLP that uses an activation function composed
of a sinusoidal multiplied by a sublinear function, called the damping
function. The sinusoidal enables the network to automatically learn the
positional embedding of an input coordinate while the damping passes on the
actual coordinate value by preventing it from being projected down to within a
finite range of values. Our results indicate that SPDERs speed up training by
10x and converge to losses 1,500-50,000x lower than that of the
state-of-the-art for image representation. SPDER is also state-of-the-art in
audio representation. The superior representation capability allows SPDER to
also excel on multiple downstream tasks such as image super-resolution and
video frame interpolation. We provide intuition as to why SPDER significantly
improves fitting compared to that of other INR methods while requiring no
hyperparameter tuning or preprocessing.
- Abstract(参考訳): 本稿では,従来の暗黙的ニューラルネットワークが直面する低周波に対して,位置埋め込みを自然に学習し,スペクトルバイアスを克服するように設計されたニューラルネットワークアーキテクチャを提案する。
提案するアーキテクチャであるSPDERは, 減衰関数と呼ばれる正弦波を線形関数で乗算した活性化関数を用いた単純なMLPである。
正弦波は、入力座標の位置埋め込みをネットワークが自動的に学習し、減衰が実際の座標値に渡され、それが有限範囲の値に投影されることを防止できる。
以上の結果から,SPDERはトレーニングを10倍に高速化し,画像表現の最先端よりも1500~50,000倍の損失に収束することが示唆された。
SPDERはオーディオ表現の最先端でもある。
優れた表現能力により、SPDERは画像の超解像やビデオフレームの補間といった下流タスクにも優れる。
ハイパーパラメータチューニングやプリプロセッシングを必要とせず,他のinr法に比べてspderの適合性が著しく向上する理由を直観的に示す。
関連論文リスト
- Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
ニューラルネットワークを利用して、座標入力を対応する属性に変換するインプシット表現(INR)は、視覚関連領域において大きな進歩をもたらした。
SL$2$A-INR を単層学習可能なアクティベーション関数として提案し,従来の ReLU ベースの有効性を推し進める。
提案手法は,画像表現,3次元形状再構成,単一画像超解像,CT再構成,新しいビューなど,多様なタスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - FINER++: Building a Family of Variable-periodic Functions for Activating Implicit Neural Representation [39.116375158815515]
Inlicit Neural Representation (INR)は、信号処理の分野で革命を引き起こしている。
INR技術は「周波数」特定スペクトルバイアスとキャパシティ・コンバージェンスギャップに悩まされる。
既存の周期的/非周期的アクティベーション関数を可変周期的関数に拡張することにより、FINER++フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-28T09:24:57Z) - FINER: Flexible spectral-bias tuning in Implicit NEural Representation
by Variable-periodic Activation Functions [40.80112550091512]
暗黙の神経表現は、信号処理の分野で革命を引き起こしている。
現在のINR技術は、サポートされた周波数セットをチューニングする制限された能力に悩まされている。
本稿では,FINERを提案する可変周期アクティベーション関数を提案する。
本研究では,FINERの2次元画像適合性,3次元符号付き距離場表現,および5次元ニューラル場放射率最適化の文脈における機能を示す。
論文 参考訳(メタデータ) (2023-12-05T02:23:41Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
一般化可能な暗黙的ニューラル表現(INR)は、単一の連続関数が複数のデータインスタンスを表現することを可能にする。
本稿では、変換器エンコーダと局所性を考慮したINRデコーダを組み合わせた一般化可能なINRのための新しいフレームワークを提案する。
我々のフレームワークは、従来の一般化可能なINRよりも大幅に優れており、下流タスクにおける局所性を考慮した潜在能力の有効性を検証している。
論文 参考訳(メタデータ) (2023-10-09T11:26:58Z) - Disorder-invariant Implicit Neural Representation [32.510321385245774]
入射神経表現(INR)は、信号の属性を対応する座標の関数として特徴づける。
本稿では、従来のINRバックボーンにハッシュテーブルを付加することにより、障害不変な暗黙的神経表現(DINER)を提案する。
論文 参考訳(メタデータ) (2023-04-03T09:28:48Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - DINER: Disorder-Invariant Implicit Neural Representation [33.10256713209207]
入射神経表現(INR)は、信号の属性を対応する座標の関数として特徴づける。
本稿では、従来のINRバックボーンにハッシュテーブルを付加することにより、障害不変な暗黙的神経表現(DINER)を提案する。
論文 参考訳(メタデータ) (2022-11-15T03:34:24Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
ニューラルインシシット辞書(NID)を学習することで、データとトレーニング効率の両方を達成する汎用INRフレームワークを提案する。
我々のNIDは、所望の関数空間にまたがるように調整された座標ベースのImpworksのグループを組み立てる。
実験の結果,NIDは最大98%の入力データで2次元画像や3次元シーンの再現を2桁高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-08T05:07:19Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。