論文の概要: Internal Contrastive Learning for Generalized Out-of-distribution Fault
Diagnosis (GOOFD) Framework
- arxiv url: http://arxiv.org/abs/2306.15266v1
- Date: Tue, 27 Jun 2023 07:50:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 14:20:50.978744
- Title: Internal Contrastive Learning for Generalized Out-of-distribution Fault
Diagnosis (GOOFD) Framework
- Title(参考訳): 一般分布異常診断(goofd)フレームワークのための内部コントラスト学習
- Authors: Xingyue Wang, Hanrong Zhang, Ke Ma, Shuting Tao, Peng Peng, Hongwei
Wang
- Abstract要約: 本稿では, 故障検出, 故障分類, 新たな故障診断など, 診断サブタスクを統合するための汎用フレームワークを提案する。
提案手法の基盤となる内部コントラスト学習に基づく統合的故障診断手法を提案する。
実験で示されたように,提案手法は既存手法と比較して性能が向上する。
- 参考スコア(独自算出の注目度): 8.668685281157373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault diagnosis is essential in industrial processes for monitoring the
conditions of important machines. With the ever-increasing complexity of
working conditions and demand for safety during production and operation,
different diagnosis methods are required, and more importantly, an integrated
fault diagnosis system that can cope with multiple tasks is highly desired.
However, the diagnosis subtasks are often studied separately, and the currently
available methods still need improvement for such a generalized system. To
address this issue, we propose the Generalized Out-of-distribution Fault
Diagnosis (GOOFD) framework to integrate diagnosis subtasks, such as fault
detection, fault classification, and novel fault diagnosis. Additionally, a
unified fault diagnosis method based on internal contrastive learning is put
forward to underpin the proposed generalized framework. The method extracts
features utilizing the internal contrastive learning technique and then
recognizes the outliers based on the Mahalanobis distance. Experiments are
conducted on a simulated benchmark dataset as well as two practical process
datasets to evaluate the proposed framework. As demonstrated in the
experiments, the proposed method achieves better performance compared with
several existing techniques and thus verifies the effectiveness of the proposed
framework.
- Abstract(参考訳): 故障診断は重要な機械の状態をモニタリングする産業プロセスにおいて不可欠である。
生産・運用中の作業条件の複雑化と安全性の要求により、異なる診断方法が必要となり、さらに重要なことに、複数のタスクに対処可能な統合障害診断システムが望まれている。
しかし、診断サブタスクはしばしば別々に研究され、現在利用可能な方法はそのような一般化されたシステムの改善が必要である。
そこで本研究では,障害検出,故障分類,新しい故障診断などの診断サブタスクを統合するため,GOOFD(Generalized Out-of-distriion Fault Diagnosis)フレームワークを提案する。
さらに,内部コントラスト学習に基づく統合的故障診断手法が提案された一般化フレームワークの基盤となる。
本手法は,内部コントラスト学習手法を用いて特徴を抽出し,マハラノビス距離に基づいて外れ値を認識する。
提案フレームワークを評価するために,シミュレーションベンチマークデータセットと2つの実用的なプロセスデータセットを用いて実験を行った。
実験で示されたように,提案手法は既存手法と比較して性能が向上し,提案手法の有効性が検証される。
関連論文リスト
- TVDiag: A Task-oriented and View-invariant Failure Diagnosis Framework with Multimodal Data [11.373761837547852]
マイクロサービスベースのシステムは、複雑なインタラクションとスケールの拡大によって、信頼性上の問題に悩まされることが多い。
単一モードのデータを使用する従来の障害診断方法は、制限された情報のため、すべての障害シナリオをほとんどカバーできない。
我々は,マルチモーダルな障害診断フレームワークである textitTVDiag を提案する。
論文 参考訳(メタデータ) (2024-07-29T05:26:57Z) - Diagnosis driven Anomaly Detection for CPS [44.97616703648182]
本稿では、深層学習に基づく異常検出を利用して、一貫性に基づく診断(CBD)のための入力を生成する手法を提案する。
我々は、シミュレーションと実世界のCPSデータセットに対する我々のアプローチを評価し、我々のモデルは、他の最先端モデルと比較して強い性能を示す。
論文 参考訳(メタデータ) (2023-11-27T15:34:40Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems [3.4991031406102238]
本稿では,空間的に相関したスパースベイズ学習(CSSBL)をクラスタリングする新しい故障診断手法を提案する。
提案手法の有効性は,実際の自己体組立システムを用いた数値および実世界のケーススタディによって検証される。
提案手法の一般化により,コミュニケーションや医療システムなど他の領域の故障診断に応用できる。
論文 参考訳(メタデータ) (2023-10-20T23:56:53Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
本稿では,産業システムにおけるリアルタイムマルチモード故障診断のための新しい手法を提案する。
提案手法では,拡張エビデンス推論 (ER) アルゴリズムを用いて情報を融合し,異なる基底分類器から出力をマージする。
提案手法の有効性は、マルチモードのテネシー・イーストマンプロセスデータセット上で実証される。
論文 参考訳(メタデータ) (2023-04-29T04:42:44Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
問題は、センサーとアクチュエータが個別のバイナリ信号を提供する自動生産システムのオンライン診断である。
本稿では,診断システムの機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-24T08:56:13Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
データ駆動型故障診断・隔離方式は, 燃料供給システムにおける故障とセンサ測定のために, 明確に開発されている。
モデルは機械学習の分類器を使用してトレーニングされ、トレーニングされた障害シナリオのセットをリアルタイムで検出する。
提案手法の利点, 性能, 性能を実証し, 実証するために, いくつかのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-10-17T13:42:37Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
転がり軸受は、過酷な環境下での長時間の運転により、様々な障害にさらされる。
現在の深層学習法は, 決定論的分類の形で軸受断層診断を行う。
本研究では,予測の不確実性を考慮した確率的故障診断フレームワークを開発した。
論文 参考訳(メタデータ) (2021-09-19T18:34:29Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
我々は、いつでも直接診断できるflexdiagを紹介し分析する。
特徴モデルの領域からの構成ベンチマークと自動車領域からの産業構成知識ベースを使用して、性能および診断品質に関するアルゴリズムを評価します。
論文 参考訳(メタデータ) (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。