Neural Network Modeling of Microstructure Complexity Using Digital Libraries
- URL: http://arxiv.org/abs/2501.18189v1
- Date: Thu, 30 Jan 2025 07:44:21 GMT
- Title: Neural Network Modeling of Microstructure Complexity Using Digital Libraries
- Authors: Yingjie Zhao, Zhiping Xu,
- Abstract summary: We evaluate the performance of artificial and spiking neural networks in learning and predicting fatigue crack growth and Turing pattern development.
Our assessment suggests that the leaky integrate-and-fire neuron model offers superior predictive accuracy with fewer parameters and less memory usage.
- Score: 1.03590082373586
- License:
- Abstract: Microstructure evolution in matter is often modeled numerically using field or level-set solvers, mirroring the dual representation of spatiotemporal complexity in terms of pixel or voxel data, and geometrical forms in vector graphics. Motivated by this analog, as well as the structural and event-driven nature of artificial and spiking neural networks, respectively, we evaluate their performance in learning and predicting fatigue crack growth and Turing pattern development. Predictions are made based on digital libraries constructed from computer simulations, which can be replaced by experimental data to lift the mathematical overconstraints of physics. Our assessment suggests that the leaky integrate-and-fire neuron model offers superior predictive accuracy with fewer parameters and less memory usage, alleviating the accuracy-cost tradeoff in contrast to the common practices in computer vision tasks. Examination of network architectures shows that these benefits arise from its reduced weight range and sparser connections. The study highlights the capability of event-driven models in tackling problems with evolutionary bulk-phase and interface behaviors using the digital library approach.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Designing DNNs for a trade-off between robustness and processing performance in embedded devices [1.474723404975345]
Machine learning-based embedded systems need to be robust against soft errors.
This paper investigates the suitability of using bounded AFs to improve model robustness against perturbations.
We analyze encoder-decoder fully convolutional models aimed at performing semantic segmentation tasks on hyperspectral images for scene understanding in autonomous driving.
arXiv Detail & Related papers (2024-12-04T19:34:33Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Deep learning-based Visual Measurement Extraction within an Adaptive Digital Twin Framework from Limited Data Using Transfer Learning [0.0]
Digital Twins technology is revolutionizing decision-making in scientific research by integrating models and simulations with real-time data.
This research proposes a novel approach using Artificial Intelligence.
Convolutional Neural Networks are employed to analyze structural behaviors in real-time by correlating Digital Image Correlation speckle pattern images with deformation fields.
arXiv Detail & Related papers (2024-10-07T18:10:12Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity [0.0]
We develop a novel deep neural network unit characterized by a sparse higher-order graphical architecture built over the homological structure of underlying data.
Results demonstrate the advantages of this novel design which can tie or overcome the results of state-of-the-art machine learning and deep learning models using only a fraction of parameters.
arXiv Detail & Related papers (2023-06-27T09:46:16Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
We use a one-shot neural architecture search model to implicitly evaluate the performance of an intractable number of neural networks.
We show that our method can accurately model the relative performance between models with different latencies and predict the performance of unseen models with good precision across different datasets.
arXiv Detail & Related papers (2021-04-25T00:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.