論文の概要: Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging
Systems
- arxiv url: http://arxiv.org/abs/2306.15341v1
- Date: Tue, 27 Jun 2023 09:51:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 14:01:52.817152
- Title: Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging
Systems
- Title(参考訳): 改良ミリ波イメージングシステムのためのハイブリッド学習アルゴリズム
- Authors: Josiah Smith
- Abstract要約: この論文は、改良されたmmWaveイメージングシステムのための新しいハイブリッド学習アルゴリズムを導入している。
静的および動的ジェスチャー分類を含む様々な問題空間を探索する。
前方合成開口レーダ(SAR)を用いた高分解能近接場ミリ波イメージング
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300
GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including
security sensing, industrial packaging, medical imaging, and non-destructive
testing. Traditional methods for perception and imaging are challenged by novel
data-driven algorithms that offer improved resolution, localization, and
detection rates. Over the past decade, deep learning technology has garnered
substantial popularity, particularly in perception and computer vision
applications. Whereas conventional signal processing techniques are more easily
generalized to various applications, hybrid approaches where signal processing
and learning-based algorithms are interleaved pose a promising compromise
between performance and generalizability. Furthermore, such hybrid algorithms
improve model training by leveraging the known characteristics of radio
frequency (RF) waveforms, thus yielding more efficiently trained deep learning
algorithms and offering higher performance than conventional methods. This
dissertation introduces novel hybrid-learning algorithms for improved mmWave
imaging systems applicable to a host of problems in perception and sensing.
Various problem spaces are explored, including static and dynamic gesture
classification; precise hand localization for human computer interaction;
high-resolution near-field mmWave imaging using forward synthetic aperture
radar (SAR); SAR under irregular scanning geometries; mmWave image
super-resolution using deep neural network (DNN) and Vision Transformer (ViT)
architectures; and data-level multiband radar fusion using a novel
hybrid-learning architecture. Furthermore, we introduce several novel
approaches for deep learning model training and dataset synthesis.
- Abstract(参考訳): ミリ波(mmWave)、30 GHzから300 GHz、テラヘルツ(THz)、300 GHzから10 THz、セキュリティセンシング、産業用包装、医療画像、非破壊検査などの応用が注目されている。
従来の知覚とイメージングの方法は、解像度、局在性、検出率を改善する新しいデータ駆動アルゴリズムによって挑戦される。
過去10年間、ディープラーニング技術は、特に知覚やコンピュータビジョンアプリケーションにおいて、かなりの人気を集めてきた。
従来の信号処理技術は様々な用途に容易に一般化されるが、信号処理と学習に基づくアルゴリズムをインターリーブするハイブリッドアプローチは、性能と一般化性の間に有望な妥協をもたらす。
さらに、これらのハイブリッドアルゴリズムは、無線周波数(RF)波形の既知の特性を活用してモデルトレーニングを改善し、より効率的に訓練されたディープラーニングアルゴリズムを提供し、従来の手法よりも高い性能を提供する。
この論文は、知覚とセンシングの多くの問題に適用可能なmm波イメージングシステムを改善するための新しいハイブリッド学習アルゴリズムを導入している。
静的および動的ジェスチャー分類、人間のコンピュータインタラクションの正確な手の位置決め、前方合成開口レーダ(SAR)を用いた高分解能近距離ミリ波イメージング、不規則な走査測地下でのSAR、ディープニューラルネットワーク(DNN)とビジョントランスフォーマー(ViT)アーキテクチャを用いたミリ波画像超解像、新しいハイブリッドラーニングアーキテクチャを用いたデータレベルマルチバンドレーダ融合など、様々な問題領域が検討されている。
さらに,ディープラーニングモデルのトレーニングとデータセット合成のための新しい手法をいくつか紹介する。
関連論文リスト
- Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
我々は,ハイブリッド電子フォトニックプラットフォーム上で,ダイレクトフィードバックアライメントと呼ばれる多目的でスケーラブルなトレーニングアルゴリズムを実験的に実装した。
光処理ユニットは、このアルゴリズムの中央動作である大規模ランダム行列乗算を最大1500テラOpsで行う。
我々は、ハイブリッド光アプローチの計算スケーリングについて検討し、超深度・広帯域ニューラルネットワークの潜在的な利点を実証する。
論文 参考訳(メタデータ) (2024-09-01T12:48:47Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Emerging Approaches for THz Array Imaging: A Tutorial Review and
Software Tool [2.5382095320488673]
THz周波数は、サブミリ波解像度での合成開口レーダ(SAR)イメージングに適している。
本稿では,近距離領域におけるTHz SARのシステムとアルゴリズムについて概説する。
セキュリティアプリケーションのためのオブジェクト検出とSAR画像の超解像に着目した。
論文 参考訳(メタデータ) (2023-09-16T02:54:02Z) - Efficient CNN-based Super Resolution Algorithms for mmWave Mobile Radar
Imaging [2.3623206450285457]
近距離場合成開口レーダ(SAR)イメージングの新興モードに対する革新的な超解像手法を提案する。
近年の研究では、畳み込みニューラルネットワーク(CNN)アーキテクチャを拡張して、レーダシグナリングから生成された画像の超高解像度化を実現している。
我々は,最新のSAR処理とディープラーニング技術を用いて,モバイルアプリケーションにおけるSAR画像の超解像を実現する新しいCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:54:28Z) - Efficient 3-D Near-Field MIMO-SAR Imaging for Irregular Scanning
Geometries [0.0]
本研究では, 近接場合成開口レーダ (SAR) イメージングのための新しいアルゴリズムを提案する。
任意かつ不規則なサンプリング測地を数学的に分解する枠組みと,マルチスタティックアレイ画像アーティファクトのジョイントソリューションを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:07:21Z) - Improved Static Hand Gesture Classification on Deep Convolutional Neural
Networks using Novel Sterile Training Technique [2.534406146337704]
非接触手ポーズと静的ジェスチャー認識は多くのアプリケーションで注目されている。
本稿では, ステレオ画像の導入により, 効率的なデータ収集手法と深部CNN訓練手法を提案する。
提案されたデータ収集とトレーニング手法を適用すると、静的ハンドジェスチャの分類率が85%から93%に向上する。
論文 参考訳(メタデータ) (2023-05-03T11:10:50Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Neural Architectural Nonlinear Pre-Processing for mmWave Radar-based
Human Gesture Perception [10.826849062116748]
本稿では,U-NetとEfficientNetという2つのディープラーニングモデルを用いて手の動きを検出し,ミリ波レーダ画像のノイズを除去する。
第1深層学習モデルステージに入る前に、画像の復号化を行うための新しい前処理手法により、分類の精度が向上する。
論文 参考訳(メタデータ) (2022-11-07T12:42:13Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
本稿では,無線モバイルユーザに対して,超信頼性でエネルギー効率のよいバーチャルリアリティ(VR)体験を提供するという課題について検討する。
モバイルユーザへの信頼性の高い超高精細ビデオフレーム配信を実現するために,コーディネートマルチポイント(CoMP)伝送技術とミリ波(mmWave)通信を利用する。
論文 参考訳(メタデータ) (2021-06-03T08:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。