論文の概要: PANet: LiDAR Panoptic Segmentation with Sparse Instance Proposal and
Aggregation
- arxiv url: http://arxiv.org/abs/2306.15348v1
- Date: Tue, 27 Jun 2023 10:02:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 13:49:29.868288
- Title: PANet: LiDAR Panoptic Segmentation with Sparse Instance Proposal and
Aggregation
- Title(参考訳): PANet: スパースインスタンスの提案と集約によるLiDARパノプティブセグメンテーション
- Authors: Jianbiao Mei, Yu Yang, Mengmeng Wang, Xiaojun Hou, Laijian Li and Yong
Liu
- Abstract要約: この作業では、オフセットブランチへの依存性を排除するため、PANetという新しいLPSフレームワークを提案する。
PaNet はセマンティック KITII バリデーションと nuScenes バリデーションのパン光学セグメンテーションタスクに関する論文の中で,最先端のパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 15.664835767712775
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable LiDAR panoptic segmentation (LPS), including both semantic and
instance segmentation, is vital for many robotic applications, such as
autonomous driving. This work proposes a new LPS framework named PANet to
eliminate the dependency on the offset branch and improve the performance on
large objects, which are always over-segmented by clustering algorithms.
Firstly, we propose a non-learning Sparse Instance Proposal (SIP) module with
the ``sampling-shifting-grouping" scheme to directly group thing points into
instances from the raw point cloud efficiently. More specifically, balanced
point sampling is introduced to generate sparse seed points with more uniform
point distribution over the distance range. And a shift module, termed bubble
shifting, is proposed to shrink the seed points to the clustered centers. Then
we utilize the connected component label algorithm to generate instance
proposals. Furthermore, an instance aggregation module is devised to integrate
potentially fragmented instances, improving the performance of the SIP module
on large objects. Extensive experiments show that PANet achieves
state-of-the-art performance among published works on the SemanticKITII
validation and nuScenes validation for the panoptic segmentation task.
- Abstract(参考訳): セマンティックとインスタンスセグメンテーションの両方を含む信頼性の高いLiDARパン光学セグメンテーション(LPS)は、自律運転など多くのロボットアプリケーションにとって不可欠である。
この研究は、PANetと呼ばれる新しいLPSフレームワークを提案し、オフセットブランチへの依存を排除し、クラスタリングアルゴリズムによって常に過剰に分離される大規模なオブジェクトのパフォーマンスを改善する。
まず,sip(non-learning sparse instance proposal)モジュールを提案する。``sampling-shifting-grouping' スキームを用いて,オブジェクトポイントを生のポイントクラウドからインスタンスに直接グループ化する。
より具体的には、距離範囲にわたってより均一な点分布を持つスパースシードポイントを生成するためにバランスの取れた点サンプリングを導入する。
バブルシフトと呼ばれるシフトモジュールは、集束された中心へのシードポイントを縮小するために提案される。
次に,コネクテッドコンポーネントラベルアルゴリズムを用いてインスタンスの提案を行う。
さらに、インスタンス集約モジュールは、潜在的に断片化されたインスタンスを統合するために考案され、大きなオブジェクト上のSIPモジュールのパフォーマンスが向上する。
広範な実験により、panetはsemantickitii検証とpanopticセグメンテーションタスクのnuscenesバリデーションに関する出版作品の中で最先端のパフォーマンスを達成していることが示された。
関連論文リスト
- BAISeg: Boundary Assisted Weakly Supervised Instance Segmentation [9.6046915661065]
インスタンスレベルの監視なしにインスタンスレベルのマスクを抽出する方法は、弱教師付きインスタンスセグメンテーション(WSIS)の主な課題である
人気のあるWSIS手法は、画素間関係の学習を通じて変位場(DF)を推定し、インスタンスを識別するためのクラスタリングを実行する。
本稿では,画素レベルのアノテーションでインスタンスセグメンテーションを実現するWSISの新しいパラダイムであるBundary-Assisted Instance(BAISeg)を提案する。
論文 参考訳(メタデータ) (2024-05-27T15:14:09Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
ライダーセグメンテーションと追跡のための検出中心ネットワークを提案する。
私たちのネットワークのコアコンポーネントの1つは、オブジェクトインスタンス検出ブランチです。
提案手法を複数の3D/4D LPSベンチマークで評価し,我々のモデルがオープンソースモデル間で新たな最先端性を確立することを確認した。
論文 参考訳(メタデータ) (2023-10-19T04:44:43Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - PUPS: Point Cloud Unified Panoptic Segmentation [13.668363631123649]
本稿では,シンプルだが効果的な点群統合パノプティックセグメンテーション(PUPS)フレームワークを提案する。
PUPSは、ポイントレベルの分類器のセットを使用して、エンド・ツー・エンドの方法でセマンティクスとインスタンス・グループを直接予測する。
PUPSはSemantic KITTI Panoptic segmentation Taskのリーダーボードで1位を獲得し、nuScenesの最先端の結果を得た。
論文 参考訳(メタデータ) (2023-02-13T08:42:41Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
本稿では,リアルタイムインスタンスセグメンテーションのための概念的・効率的・完全畳み込み型フレームワークを提案する。
SparseInstは非常に高速な推論速度を持ち、COCOベンチマークで40 FPSと37.9 APを達成した。
論文 参考訳(メタデータ) (2022-03-24T03:15:39Z) - CPSeg: Cluster-free Panoptic Segmentation of 3D LiDAR Point Clouds [2.891413712995641]
CPSegと呼ばれるLiDAR点雲のための新しいリアルタイム・エンド・エンド・エンド・パノプティクス・セグメンテーション・ネットワークを提案する。
CPSegは、共有エンコーダ、デュアルデコーダ、タスク認識アテンションモジュール(TAM)、クラスタフリーインスタンスセグメンテーションヘッドを備える。
論文 参考訳(メタデータ) (2021-11-02T16:44:06Z) - SMAC-Seg: LiDAR Panoptic Segmentation via Sparse Multi-directional
Attention Clustering [1.1470070927586016]
学習可能なスパースな多方向アテンションクラスタリングを複数スケールのフォアグラウンドインスタンスに提示する。
SMAC-Segはリアルタイムクラスタリングベースのアプローチであり、インスタンスをセグメント化する複雑な提案ネットワークを取り除く。
実験の結果,SMAC-Segはリアルタイムにデプロイ可能なネットワークにおいて,最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2021-08-31T02:25:01Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
インスタンスカテゴリ"は、インスタンスの場所に応じて、インスタンス内の各ピクセルにカテゴリを割り当てる。
SOLO"は、強力なパフォーマンスを備えたインスタンスセグメンテーションのための、シンプルで、直接的で、高速なフレームワークです。
提案手法は, 高速化と精度の両面から, 実例分割の最先端結果を実現する。
論文 参考訳(メタデータ) (2021-06-30T09:56:54Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
本稿では,インスタンスの性質に応じて適切な畳み込みカーネルを生成するデータ駆動型アプローチを提案する。
提案手法はScanetNetV2とS3DISの両方で有望な結果が得られる。
また、現在の最先端よりも推論速度を25%以上向上させる。
論文 参考訳(メタデータ) (2020-11-26T14:56:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。