論文の概要: Simple Steps to Success: Axiomatics of Distance-Based Algorithmic
Recourse
- arxiv url: http://arxiv.org/abs/2306.15557v2
- Date: Tue, 1 Aug 2023 20:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 17:12:07.388091
- Title: Simple Steps to Success: Axiomatics of Distance-Based Algorithmic
Recourse
- Title(参考訳): 成功への簡単なステップ:距離ベースアルゴリズムの公理学
- Authors: Jenny Hamer, Jake Valladares, Vignesh Viswanathan, Yair Zick
- Abstract要約: 本稿では,方向に基づくアルゴリズム・リコースを計算するための,公理的に正当化されたフレームワークStEPを提案する。
StEPは、証明可能なプライバシとロバスト性保証を提供し、確立されたいくつかのデシダラタの最先端を上回ります。
- 参考スコア(独自算出の注目度): 13.207786673115296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel data-driven framework for algorithmic recourse that offers
users interventions to change their predicted outcome. Existing approaches to
compute recourse find a set of points that satisfy some desiderata -- e.g. an
intervention in the underlying causal graph, or minimizing a cost function.
Satisfying these criteria, however, requires extensive knowledge of the
underlying model structure, often an unrealistic amount of information in
several domains. We propose a data-driven, computationally efficient approach
to computing algorithmic recourse. We do so by suggesting directions in the
data manifold that users can take to change their predicted outcome. We present
Stepwise Explainable Paths (StEP), an axiomatically justified framework to
compute direction-based algorithmic recourse. We offer a thorough empirical and
theoretical investigation of StEP. StEP offers provable privacy and robustness
guarantees, and outperforms the state-of-the-art on several established
recourse desiderata.
- Abstract(参考訳): 本稿では,予測結果の変更にユーザによる介入を提供する,新しいデータ駆動型手法を提案する。
例えば、基礎となる因果グラフへの介入やコスト関数の最小化などである。
しかし、これらの基準を満たすためには、基礎となるモデル構造に関する広範な知識が必要である。
本稿では,データ駆動型,計算効率のよいアルゴリズム手法を提案する。
私たちは、ユーザが予測結果を変更することができるデータ多様体の方向を提案することでそうします。
方向に基づくアルゴリズムの帰納法を計算するための公理的正当化フレームワークである stepwise explanationable paths (step) を提案する。
StEPの徹底的な実証と理論的研究を提供する。
StEPは、証明可能なプライバシとロバスト性保証を提供し、確立されたいくつかのデシダータの最先端を上回ります。
関連論文リスト
- Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
強化学習における探索問題について検討し,新しいモデルフリーソリューションを提案する。
我々の戦略は、最先端の探査アプローチよりも高速に効率的な政策を特定できる。
論文 参考訳(メタデータ) (2024-06-30T19:00:49Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - On efficient computation in active inference [1.1470070927586016]
計算量を大幅に減らした有限時間地平線に対する新しい計画アルゴリズムを提案する。
また、新規かつ既存のアクティブな推論計画スキームに対して適切な目標分布を設定するプロセスを簡単にする。
論文 参考訳(メタデータ) (2023-07-02T07:38:56Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - STEERING: Stein Information Directed Exploration for Model-Based
Reinforcement Learning [111.75423966239092]
遷移モデルの現在の推定値と未知の最適値との間の積分確率距離(IPM)の観点から探索インセンティブを提案する。
KSDに基づく新しいアルゴリズムを開発した。 textbfSTEin information dirtextbfEcted Explor for model-based textbfReinforcement Learntextbfing。
論文 参考訳(メタデータ) (2023-01-28T00:49:28Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
オフラインポリシーの最適化は多くの現実世界の意思決定問題に大きな影響を与える可能性がある。
重要度サンプリングとその変種は、オフラインポリシー評価において一般的に使用されるタイプの推定器である。
そこで本稿では, 州ごとの正規化制約によって過度に適合することを避けるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-01T19:18:15Z) - A Unified View of Algorithms for Path Planning Using Probabilistic
Inference on Factor Graphs [2.4874504720536317]
この研究は、様々なコスト関数から生じる特定の再帰について考察し、スコープに類似しているように見えるが、少なくとも典型的な経路計画問題に適用した場合に違いがある。
確率空間とログ空間の両方で提示されるこの統一されたアプローチは、Sum-product、Max-product、Dynamic Programming、混合Reward/Entropy基準に基づくアルゴリズムを含む非常に一般的なフレームワークを提供する。
論文 参考訳(メタデータ) (2021-06-19T07:13:15Z) - Enforcing Almost-Sure Reachability in POMDPs [10.883864654718103]
部分観測可能なマルコフ決定プロセス(POMDP)は、限られた情報の下での逐次決定のためのよく知られたモデルである。
我々は、悪い状態にたどり着くことなく、ほぼ確実に目標状態に達するような、EXPTIMEの難題を考察する。
SATに基づく新しい反復手法と,決定図に基づく代替手法の2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-30T19:59:46Z) - Scalable Approximate Inference and Some Applications [2.6541211006790983]
本稿では,近似推論のための新しいフレームワークを提案する。
提案する4つのアルゴリズムは,Steinの手法の最近の計算進歩に動機付けられている。
シミュレーションおよび実データを用いた結果から,アルゴリズムの統計的効率と適用性を示す。
論文 参考訳(メタデータ) (2020-03-07T04:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。