論文の概要: SparseOptimizer: Sparsify Language Models through Moreau-Yosida
Regularization and Accelerate via Compiler Co-design
- arxiv url: http://arxiv.org/abs/2306.15656v3
- Date: Tue, 18 Jul 2023 17:52:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 18:17:24.611232
- Title: SparseOptimizer: Sparsify Language Models through Moreau-Yosida
Regularization and Accelerate via Compiler Co-design
- Title(参考訳): SparseOptimizer: Moreau-Yosida正規化による言語モデルのスパース化とコンパイラ共設計による高速化
- Authors: Fu-Ming Guo
- Abstract要約: 本稿では, BERT, ALBERT, GPTなどの大規模言語モデルにおいて, モロー・ヨシダ正規化を利用した新しいディープラーニングであるスペーサーを紹介する。
Sparserのプラグイン・アンド・プレイ機能は、コード修正の必要性を排除し、幅広い大きな言語モデルに対して普遍的に適応可能なツールである。
GLUE, RACE, SQuAD1, SQuAD2などのベンチマークデータセットに関する実証的な評価では、SBERTとSprserは、Sparserを使用すると、その密度の高いデータセットに匹敵するパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 0.685316573653194
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces SparseOptimizer, a novel deep learning optimizer that
exploits Moreau-Yosida regularization to naturally induce sparsity in large
language models such as BERT, ALBERT and GPT. Key to the design of
SparseOptimizer is an embedded shrinkage operator, which imparts sparsity
directly within the optimization process. This operator, backed by a sound
theoretical framework, includes an analytical solution, thereby reinforcing the
optimizer's robustness and efficacy. Crucially, SparseOptimizer's plug-and-play
functionality eradicates the need for code modifications, making it a
universally adaptable tool for a wide array of large language models. Empirical
evaluations on benchmark datasets such as GLUE, RACE, SQuAD1, and SQuAD2
confirm that SparseBERT and SparseALBERT, when sparsified using
SparseOptimizer, achieve performance comparable to their dense counterparts,
BERT and ALBERT, while significantly reducing their parameter count. Further,
this work proposes an innovative optimizer-compiler co-design strategy,
demonstrating the potential of inference acceleration (\textbf{3.37x},
\textbf{6.30x}, and \textbf{7.15x} in comparison with Pytorch, TensorFlow, and
LLVM generic compile, respectively) in SparseBERT when paired with an
appropriately designed compiler. This study represents a significant step
forward in the evolution of efficient, scalable, and high-performing large
language models, setting a precedent for future exploration and optimization in
this domain. The SparseOptimizer code and SparseALBERT model will be publicly
available upon paper acceptance.
- Abstract(参考訳): 本稿では、モロー・ヨシダ正規化を利用してBERT、ALBERT、GPTなどの大規模言語モデルにおいて、自然に空間性を誘導する新しいディープラーニングオプティマイザであるSparseOptimizerを紹介する。
スパースオプティマイザの設計の鍵は、最適化プロセス内で直接スパース性を与える埋め込み縮小演算子である。
この演算子は、音理論の枠組みによって支えられ、解析的な解を含み、最適化者の堅牢性と有効性を補強する。
重要なことに、SparseOptimizerのプラグイン・アンド・プレイ機能は、コード修正の必要性を排除し、幅広い大きな言語モデルに対して普遍的に適応可能なツールである。
GLUE, RACE, SQuAD1, SQuAD2などのベンチマークデータセットに対する実証的な評価では、SparseOptimizerを使用してスパースされたSparseBERTとSparseALBERTが、密度の高いBERTとALBERTに匹敵するパフォーマンスを実現し、パラメータ数を大幅に削減した。
さらに本研究では,pytorch,tensorflow,llvmジェネリックコンパイルと比較して,sparsebertにおける推論加速度(\textbf{3.37x}, \textbf{6.30x}, \textbf{7.15x})の可能性を示す,革新的なオプティマイザ・コンパイラの共同設計戦略を提案する。
この研究は、効率的でスケーラブルでハイパフォーマンスな大規模言語モデルの進化における重要な一歩であり、この領域における将来の探索と最適化の先例となる。
SparseOptimizerコードとSparseALBERTモデルは、論文の受理時に公開される。
関連論文リスト
- DSTC: Direct Preference Learning with Only Self-Generated Tests and Code to Improve Code LMs [56.24431208419858]
UnderlinetextbfDirect Preference Learning with only underlinetextbfSelf-Generated underlinetextbfTests and underlinetextbfCode (DSTC)を紹介する。
DSTCは自己生成コードスニペットとテストのみを使用して信頼性の高い選好ペアを構築する。
論文 参考訳(メタデータ) (2024-11-20T02:03:16Z) - RTLRewriter: Methodologies for Large Models aided RTL Code Optimization [21.61206887869307]
本稿では,RTLコードの最適化に大規模なモデルを活用する革新的なフレームワークであるRTLRewriterを紹介する。
回路分割パイプラインを高速な合成と効率的な書き換えに利用する。
特別な検索エンジンは、有用な最適化ガイド、アルゴリズム、コードスニペットを特定するように設計されている。
論文 参考訳(メタデータ) (2024-09-04T09:59:37Z) - Should AI Optimize Your Code? A Comparative Study of Current Large Language Models Versus Classical Optimizing Compilers [0.0]
大規模言語モデル(LLM)は、コード最適化方法論に革命をもたらすAI駆動アプローチの可能性に関する興味深い疑問を提起する。
本稿では、GPT-4.0とCodeLlama-70Bの2つの最先端大言語モデルと従来の最適化コンパイラの比較分析を行う。
論文 参考訳(メタデータ) (2024-06-17T23:26:41Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Large Language Models for Compiler Optimization [22.52765975286403]
コードサイズに対してLLVMアセンブリを最適化するために,スクラッチからトレーニングしたトランスフォーマーモデルを提案する。
最適化前後の命令数と最適化コード自体を予測する。
提案手法は,コンパイラよりも命令数の削減が3.0%向上する。
論文 参考訳(メタデータ) (2023-09-11T22:11:46Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて重要な能力を示している。
本稿では,LLMの分散シフトに対するロバストな最適化法を提案する。
この問題は、ラベル付けされたソースグループに最適化されたプロンプトを同時にラベル付けされていないターゲットグループに一般化する必要がある。
論文 参考訳(メタデータ) (2023-05-23T11:30:43Z) - Learning to Superoptimize Real-world Programs [79.4140991035247]
本稿では,ニューラルシークエンス・ツー・シーケンス・モデルを用いて,実世界のプログラムを最適化するフレームワークを提案する。
我々は、x86-64アセンブリでオープンソースプロジェクトから抽出された25万以上の実世界の関数からなるデータセットであるBig Assemblyベンチマークを紹介した。
論文 参考訳(メタデータ) (2021-09-28T05:33:21Z) - LinEasyBO: Scalable Bayesian Optimization Approach for Analog Circuit
Synthesis via One-Dimensional Subspaces [11.64233949999656]
アナログ回路合成のための1次元部分空間による高速でロバストなベイズ最適化手法を提案する。
提案アルゴリズムは,バッチサイズが15のとき,LP-EIおよびREMBOpBOと比較して最大9倍,38倍の最適化手順を高速化できる。
論文 参考訳(メタデータ) (2021-09-01T21:25:25Z) - Additive Tree-Structured Covariance Function for Conditional Parameter
Spaces in Bayesian Optimization [34.89735938765757]
木構造関数への加法的仮定を一般化する。
パラメータ空間の構造情報と加法仮定をBOループに組み込むことで,取得関数を最適化する並列アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-06-21T11:21:55Z) - On the Encoder-Decoder Incompatibility in Variational Text Modeling and
Beyond [82.18770740564642]
変分オートエンコーダ(VAE)は、潜時変数と償却変分推論を結合する。
我々は,データ多様体のパラメータ化が不十分なエンコーダ・デコーダの不整合性を観察する。
同一構造を持つ決定論的オートエンコーダとVAEモデルを結合した結合型VAEを提案する。
論文 参考訳(メタデータ) (2020-04-20T10:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。