On information captured by neural networks: connections with
memorization and generalization
- URL: http://arxiv.org/abs/2306.15918v1
- Date: Wed, 28 Jun 2023 04:46:59 GMT
- Title: On information captured by neural networks: connections with
memorization and generalization
- Authors: Hrayr Harutyunyan
- Abstract summary: We study information captured by neural networks during training.
We relate example informativeness to generalization by deriving nonvacuous generalization gap bounds.
Overall, our findings contribute to a deeper understanding of the mechanisms underlying neural network generalization.
- Score: 4.082286997378594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the popularity and success of deep learning, there is limited
understanding of when, how, and why neural networks generalize to unseen
examples. Since learning can be seen as extracting information from data, we
formally study information captured by neural networks during training.
Specifically, we start with viewing learning in presence of noisy labels from
an information-theoretic perspective and derive a learning algorithm that
limits label noise information in weights. We then define a notion of unique
information that an individual sample provides to the training of a deep
network, shedding some light on the behavior of neural networks on examples
that are atypical, ambiguous, or belong to underrepresented subpopulations. We
relate example informativeness to generalization by deriving nonvacuous
generalization gap bounds. Finally, by studying knowledge distillation, we
highlight the important role of data and label complexity in generalization.
Overall, our findings contribute to a deeper understanding of the mechanisms
underlying neural network generalization.
Related papers
- Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - Information Flow in Deep Neural Networks [0.6922389632860545]
There is no comprehensive theoretical understanding of how deep neural networks work or are structured.
Deep networks are often seen as black boxes with unclear interpretations and reliability.
This work aims to apply principles and techniques from information theory to deep learning models to increase our theoretical understanding and design better algorithms.
arXiv Detail & Related papers (2022-02-10T23:32:26Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Pointer Value Retrieval: A new benchmark for understanding the limits of
neural network generalization [40.21297628440919]
We introduce a novel benchmark, Pointer Value Retrieval (PVR) tasks, that explore the limits of neural network generalization.
PVR tasks can consist of visual as well as symbolic inputs, each with varying levels of difficulty.
We demonstrate that this task structure provides a rich testbed for understanding generalization.
arXiv Detail & Related papers (2021-07-27T03:50:31Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.