論文の概要: BayesFlow: Amortized Bayesian Workflows With Neural Networks
- arxiv url: http://arxiv.org/abs/2306.16015v2
- Date: Mon, 10 Jul 2023 22:00:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 18:00:39.872986
- Title: BayesFlow: Amortized Bayesian Workflows With Neural Networks
- Title(参考訳): bayesflow:ニューラルネットワークによるベイズワークフローの償却
- Authors: Stefan T Radev and Marvin Schmitt and Lukas Schumacher and Lasse
Elsem\"uller and Valentin Pratz and Yannik Sch\"alte and Ullrich K\"othe and
Paul-Christian B\"urkner
- Abstract要約: この原稿はPythonライブラリのBayesFlowを紹介し、アモートされたデータ圧縮と推論のための確立したニューラルネットワークアーキテクチャのシミュレーションベースのトレーニングを行う。
Amortized Bayesian推論は、BayesFlowで実装されているもので、モデルシミュレーションでカスタムニューラルネットワークをトレーニングし、その後のモデル適用のためにこれらのネットワークを再使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modern Bayesian inference involves a mixture of computational techniques for
estimating, validating, and drawing conclusions from probabilistic models as
part of principled workflows for data analysis. Typical problems in Bayesian
workflows are the approximation of intractable posterior distributions for
diverse model types and the comparison of competing models of the same process
in terms of their complexity and predictive performance. This manuscript
introduces the Python library BayesFlow for simulation-based training of
established neural network architectures for amortized data compression and
inference. Amortized Bayesian inference, as implemented in BayesFlow, enables
users to train custom neural networks on model simulations and re-use these
networks for any subsequent application of the models. Since the trained
networks can perform inference almost instantaneously, the upfront neural
network training is quickly amortized.
- Abstract(参考訳): 現代のベイズ推論は、データ分析の原則的ワークフローの一部として確率的モデルからの結論を推定、検証、描画するための計算技法の混合を含む。
ベイズワークフローの典型的な問題は、様々なモデルタイプに対する難解な後続分布の近似と、その複雑さと予測性能の観点から同じプロセスの競合モデルの比較である。
この原稿はPythonライブラリのBayesFlowを紹介し、アモートされたデータ圧縮と推論のための確立したニューラルネットワークアーキテクチャのシミュレーションベースのトレーニングを行う。
Amortized Bayesian推論は、BayesFlowで実装されているもので、モデルシミュレーションでカスタムニューラルネットワークをトレーニングし、その後のモデル適用のためにこれらのネットワークを再使用することができる。
トレーニングされたネットワークは、ほぼ瞬時に推論を行うことができるため、事前のニューラルネットワークトレーニングは、迅速に償却される。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
トレーニングされたニューラルネットワークに観測データを供給することにより、モデルパラメータの後方分布を効率的に取得する。
理論的には、我々の後部はKulback-Leiblerの発散において真の後部に収束することを示す。
論文 参考訳(メタデータ) (2024-04-16T20:40:15Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Analyzing Neural Network-Based Generative Diffusion Models through Convex Optimization [45.72323731094864]
本稿では,2層ニューラルネットワークを用いた拡散モデル解析のための理論的枠組みを提案する。
我々は,1つの凸プログラムを解くことで,スコア予測のための浅層ニューラルネットワークのトレーニングが可能であることを証明した。
本結果は, ニューラルネットワークに基づく拡散モデルが漸近的でない環境で何を学習するかを, 正確に評価するものである。
論文 参考訳(メタデータ) (2024-02-03T00:20:25Z) - On Feynman--Kac training of partial Bayesian neural networks [1.6474447977095783]
部分ベイズニューラルネットワーク(pBNN)は、完全なベイズニューラルネットワークと競合することが示されている。
本稿では,Feynman-Kacモデルのシミュレーションとして,pBNNのトレーニングを定式化した効率的なサンプリングベーストレーニング戦略を提案する。
提案手法は, 予測性能において, 技術状況よりも優れることを示す。
論文 参考訳(メタデータ) (2023-10-30T15:03:15Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
専門的なニューラルネットワークアーキテクチャを用いたシミュレーションベース推論の最近の進歩は、ベイズ近似計算の多くの過去の問題を回避している。
本稿では,アモータイズされたベイズパラメータの推定とモデル比較について概説する。
論文 参考訳(メタデータ) (2020-05-08T08:12:15Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
可逆ニューラルネットワークに基づく世界規模のベイズ推定手法を提案する。
BayesFlowは、観測されたデータを最大情報的な要約統計に埋め込むよう訓練された要約ネットワークを組み込んでいる。
本研究では, 人口動態, 疫学, 認知科学, 生態学の難易度モデルに対するベイズフローの有用性を実証する。
論文 参考訳(メタデータ) (2020-03-13T13:39:31Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。