論文の概要: A variational neural Bayes framework for inference on intractable posterior distributions
- arxiv url: http://arxiv.org/abs/2404.10899v1
- Date: Tue, 16 Apr 2024 20:40:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 17:52:27.112274
- Title: A variational neural Bayes framework for inference on intractable posterior distributions
- Title(参考訳): 難治性後部分布推定のための変分ニューラルベイズフレームワーク
- Authors: Elliot Maceda, Emily C. Hector, Amanda Lenzi, Brian J. Reich,
- Abstract要約: トレーニングされたニューラルネットワークに観測データを供給することにより、モデルパラメータの後方分布を効率的に取得する。
理論的には、我々の後部はKulback-Leiblerの発散において真の後部に収束することを示す。
- 参考スコア(独自算出の注目度): 1.0801976288811024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classic Bayesian methods with complex models are frequently infeasible due to an intractable likelihood. Simulation-based inference methods, such as Approximate Bayesian Computing (ABC), calculate posteriors without accessing a likelihood function by leveraging the fact that data can be quickly simulated from the model, but converge slowly and/or poorly in high-dimensional settings. In this paper, we propose a framework for Bayesian posterior estimation by mapping data to posteriors of parameters using a neural network trained on data simulated from the complex model. Posterior distributions of model parameters are efficiently obtained by feeding observed data into the trained neural network. We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence. Our approach yields computationally efficient and theoretically justified uncertainty quantification, which is lacking in existing simulation-based neural network approaches. Comprehensive simulation studies highlight our method's robustness and accuracy.
- Abstract(参考訳): 複素モデルを持つ古典的ベイズ法は、難解な可能性のためにしばしば実現不可能である。
Approximate Bayesian Computing (ABC) のようなシミュレーションベースの推論手法は、データをモデルから素早くシミュレートできるが、高次元設定ではゆっくりと収束し、あるいは弱くなるという事実を利用して、確率関数にアクセスせずに後部を計算する。
本論文では,複素モデルからシミュレーションしたデータに基づいて学習したニューラルネットワークを用いて,パラメータの後方にデータをマッピングすることでベイズ後部推定のための枠組みを提案する。
トレーニングされたニューラルネットワークに観測データを供給することにより、モデルパラメータの後方分布を効率的に取得する。
理論的には、我々の後部はKulback-Leiblerの発散において真の後部に収束することを示す。
提案手法は,既存のシミュレーションベースニューラルネットワークアプローチに欠ける,計算効率が高く,理論的に正当化された不確実性定量化を導出する。
総合シミュレーション研究は、我々の手法の堅牢性と正確性を強調している。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
本研究では,DeepBayes推定器を提案する。
ディープリカレントニューラルネットワークアーキテクチャはオフラインでトレーニングでき、推論中にかなりの時間を節約できる。
提案手法の異なる実例モデルへの適用性を実証し, 最先端手法との詳細な比較を行う。
論文 参考訳(メタデータ) (2022-05-04T18:12:17Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Robust and integrative Bayesian neural networks for likelihood-free
parameter inference [0.0]
要約統計を学習するための最先端のニューラルネットワークベースの手法は、シミュレーションベースの確率自由パラメータ推論に有望な結果をもたらした。
本研究では,ベイズニューラルネットワークを用いて要約統計学を学習し,カテゴリー分布を用いて後部密度を直接推定する頑健な統合手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T13:45:23Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
専門的なニューラルネットワークアーキテクチャを用いたシミュレーションベース推論の最近の進歩は、ベイズ近似計算の多くの過去の問題を回避している。
本稿では,アモータイズされたベイズパラメータの推定とモデル比較について概説する。
論文 参考訳(メタデータ) (2020-05-08T08:12:15Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
可逆ニューラルネットワークに基づく世界規模のベイズ推定手法を提案する。
BayesFlowは、観測されたデータを最大情報的な要約統計に埋め込むよう訓練された要約ネットワークを組み込んでいる。
本研究では, 人口動態, 疫学, 認知科学, 生態学の難易度モデルに対するベイズフローの有用性を実証する。
論文 参考訳(メタデータ) (2020-03-13T13:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。