A Distributed Computation Model Based on Federated Learning Integrates
Heterogeneous models and Consortium Blockchain for Solving Time-Varying
Problems
- URL: http://arxiv.org/abs/2306.16023v1
- Date: Wed, 28 Jun 2023 08:50:35 GMT
- Title: A Distributed Computation Model Based on Federated Learning Integrates
Heterogeneous models and Consortium Blockchain for Solving Time-Varying
Problems
- Authors: Zhihao Hao, Guancheng Wang, Chunwei Tian, Bob Zhang
- Abstract summary: We propose a Distributed Computation Model (DCM) based on the consortium blockchain network to improve the credibility of the overall model.
In the experiments, we verify the efficiency of DCM, where the results show that the proposed model outperforms many state-of-the-art models.
- Score: 35.69540692050138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recurrent neural network has been greatly developed for effectively
solving time-varying problems corresponding to complex environments. However,
limited by the way of centralized processing, the model performance is greatly
affected by factors like the silos problems of the models and data in reality.
Therefore, the emergence of distributed artificial intelligence such as
federated learning (FL) makes it possible for the dynamic aggregation among
models. However, the integration process of FL is still server-dependent, which
may cause a great risk to the overall model. Also, it only allows collaboration
between homogeneous models, and does not have a good solution for the
interaction between heterogeneous models. Therefore, we propose a Distributed
Computation Model (DCM) based on the consortium blockchain network to improve
the credibility of the overall model and effective coordination among
heterogeneous models. In addition, a Distributed Hierarchical Integration (DHI)
algorithm is also designed for the global solution process. Within a group,
permissioned nodes collect the local models' results from different
permissionless nodes and then sends the aggregated results back to all the
permissionless nodes to regularize the processing of the local models. After
the iteration is completed, the secondary integration of the local results will
be performed between permission nodes to obtain the global results. In the
experiments, we verify the efficiency of DCM, where the results show that the
proposed model outperforms many state-of-the-art models based on a federated
learning framework.
Related papers
- FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - Decentralized Transformers with Centralized Aggregation are Sample-Efficient Multi-Agent World Models [106.94827590977337]
We propose a novel world model for Multi-Agent RL (MARL) that learns decentralized local dynamics for scalability.
We also introduce a Perceiver Transformer as an effective solution to enable centralized representation aggregation.
Results on Starcraft Multi-Agent Challenge (SMAC) show that it outperforms strong model-free approaches and existing model-based methods in both sample efficiency and overall performance.
arXiv Detail & Related papers (2024-06-22T12:40:03Z) - Vanishing Variance Problem in Fully Decentralized Neural-Network Systems [0.8212195887472242]
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns.
Our research introduces a variance-corrected model averaging algorithm.
Our simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
arXiv Detail & Related papers (2024-04-06T12:49:20Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Decentralized Event-Triggered Federated Learning with Heterogeneous
Communication Thresholds [12.513477328344255]
We propose a novel methodology for distributed model aggregations via asynchronous, event-triggered consensus iterations over a network graph topology.
We demonstrate that our methodology achieves the globally optimal learning model under standard assumptions in distributed learning and graph consensus literature.
arXiv Detail & Related papers (2022-04-07T20:35:37Z) - FedHM: Efficient Federated Learning for Heterogeneous Models via
Low-rank Factorization [16.704006420306353]
A scalable federated learning framework should address heterogeneous clients equipped with different computation and communication capabilities.
This paper proposes FedHM, a novel federated model compression framework that distributes the heterogeneous low-rank models to clients and then aggregates them into a global full-rank model.
Our solution enables the training of heterogeneous local models with varying computational complexities and aggregates a single global model.
arXiv Detail & Related papers (2021-11-29T16:11:09Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.