Autonomous Distribution of Programmable Multiqubit Entanglement in a
Dual-Rail Quantum Network
- URL: http://arxiv.org/abs/2306.16453v2
- Date: Fri, 26 Jan 2024 15:58:43 GMT
- Title: Autonomous Distribution of Programmable Multiqubit Entanglement in a
Dual-Rail Quantum Network
- Authors: Joan Agust\'i, Xin H. H. Zhang, Yuri Minoguchi, Peter Rabl
- Abstract summary: We propose and analyze a scalable and fully autonomous scheme for preparing spatially distributed multiqubit entangled states in a dual-rail waveguide QED setup.
This scheme offers an intriguing new route for distributing ready-to-use multipartite entangled states across large quantum networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and analyze a scalable and fully autonomous scheme for preparing
spatially distributed multiqubit entangled states in a dual-rail waveguide QED
setup. In this approach, arrays of qubits located along two separated
waveguides are illuminated by correlated photons from the output of a
nondegenerate parametric amplifier. These photons drive the qubits into
different classes of pure entangled steady states, for which the degree of
multipartite entanglement can be conveniently adjusted by the chosen pattern of
local qubit-photon detunings. Numerical simulations for moderate-sized networks
show that the preparation time for these complex multiqubit states increases at
most linearly with the system size and that one may benefit from an additional
speedup in the limit of a large amplifier bandwidth. Therefore, this scheme
offers an intriguing new route for distributing ready-to-use multipartite
entangled states across large quantum networks, without requiring any precise
pulse control and relying on a single Gaussian entanglement source only.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - A universal time-dependent control scheme for realizing arbitrary
bosonic unitaries [0.0]
We study the implementation of arbitrary unitary transformations between two sets of $N$ stationary bosonic modes.
By controlling the individual couplings between the modes and the channel, an initial $N$-partite quantum state in register A can be released as a multi-photon wavepacket.
arXiv Detail & Related papers (2022-09-20T00:41:44Z) - Long-distance distribution of qubit-qubit entanglement using
Gaussian-correlated photonic beams [0.0]
We investigate the deterministic generation and distribution of entanglement in large quantum networks by driving distant qubits with the output fields of a non-degenerate parametric amplifier.
Our findings show that this passive conversion of Gaussian- into discrete- variable entanglement offers a robust and experimentally very attractive approach for operating large optical, microwave or hybrid quantum networks.
arXiv Detail & Related papers (2022-04-06T18:00:01Z) - Deterministic Photon Sorting in Waveguide QED Systems [3.4756461334223228]
We show that a pair of two-level emitters, chirally coupled to a waveguide, may scatter single- and two-photon components of an input pulse into temporal modes with a fidelity $gtrsim 0.9997$.
The presented scheme can be employed to construct logic elements for propagating photons, such as a deterministic nonlinear-sign gate with a fidelity $gtrsim 0.9995$.
arXiv Detail & Related papers (2022-02-14T19:20:05Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Controllable entangled state distribution in a dual-rail reconfigurable
optical network [62.997667081978825]
Reconfigurable distribution of entangled states is essential for operation of quantum networks connecting multiple devices such as quantum memories and quantum computers.
We introduce new quantum distribution network architecture enabling control of the entangled state propagation direction using linear-optical devices and phase shifters.
arXiv Detail & Related papers (2021-08-04T10:26:37Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Scalable multimode entanglement based on efficient squeezing of
propagation eigenmodes [0.0]
We introduce a protocol for the generation of spatial multipartite entanglement based on phase-matching of a parametric propagation eigenmode in a monolithic photonic device.
We theoretically demonstrate in the spontaneous downconversion regime the generation of large multipartite entangled states useful for multimode quantum networks.
arXiv Detail & Related papers (2020-05-14T20:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.