Hyena Neural Operator for Partial Differential Equations
- URL: http://arxiv.org/abs/2306.16524v2
- Date: Wed, 20 Sep 2023 19:13:20 GMT
- Title: Hyena Neural Operator for Partial Differential Equations
- Authors: Saurabh Patil, Zijie Li, Amir Barati Farimani
- Abstract summary: Recent advances in deep learning have provided a new approach to solving partial differential equations that involves the use of neural operators.
This study utilizes a neural operator called Hyena, which employs a long convolutional filter that is parameterized by a multilayer perceptron.
Our findings indicate Hyena can serve as an efficient and accurate model for partial learning differential equations solution operator.
- Score: 9.438207505148947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerically solving partial differential equations typically requires fine
discretization to resolve necessary spatiotemporal scales, which can be
computationally expensive. Recent advances in deep learning have provided a new
approach to solving partial differential equations that involves the use of
neural operators. Neural operators are neural network architectures that learn
mappings between function spaces and have the capability to solve partial
differential equations based on data. This study utilizes a novel neural
operator called Hyena, which employs a long convolutional filter that is
parameterized by a multilayer perceptron. The Hyena operator is an operation
that enjoys sub-quadratic complexity and state space model to parameterize long
convolution that enjoys a global receptive field. This mechanism enhances the
model's comprehension of the input's context and enables data-dependent weight
for different partial differential equations instances. To measure how
effective the layers are in solving partial differential equations, we conduct
experiments on Diffusion-Reaction equation and Navier Stokes equation. Our
findings indicate Hyena Neural operator can serve as an efficient and accurate
model for learning partial differential equations solution operator. The data
and code used can be found at:
https://github.com/Saupatil07/Hyena-Neural-Operator
Related papers
- Learning Partial Differential Equations with Deep Parallel Neural Operators [11.121415128908566]
A novel methodology is to learn an operator as a means of approximating the mapping between outputs.
In practical physical science problems, the numerical solutions of partial differential equations are complex.
We propose a deep parallel operator model (DPNO) for efficiently and accurately solving partial differential equations.
arXiv Detail & Related papers (2024-09-30T06:04:04Z) - Dilated convolution neural operator for multiscale partial differential equations [11.093527996062058]
We propose the Dilated Convolutional Neural Operator (DCNO) for multiscale partial differential equations.
The DCNO architecture effectively captures both high-frequency and low-frequency features while maintaining a low computational cost.
We show that DCNO strikes an optimal balance between accuracy and computational cost and offers a promising solution for multiscale operator learning.
arXiv Detail & Related papers (2024-07-16T08:17:02Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
We introduce a new framework for approximate Bayesian uncertainty quantification in neural operators.
Our approach can be interpreted as a probabilistic analogue of the concept of currying from functional programming.
We showcase the efficacy of our approach through applications to different types of partial differential equations.
arXiv Detail & Related papers (2024-06-07T16:43:54Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
We develop a novel contrastive pretraining framework that improves neural operator generalization across multiple governing equations simultaneously.
A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function.
We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.
arXiv Detail & Related papers (2024-01-29T17:32:22Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.