Group-based Robustness: A General Framework for Customized Robustness in
the Real World
- URL: http://arxiv.org/abs/2306.16614v3
- Date: Sun, 10 Mar 2024 05:02:04 GMT
- Title: Group-based Robustness: A General Framework for Customized Robustness in
the Real World
- Authors: Weiran Lin and Keane Lucas and Neo Eyal and Lujo Bauer and Michael K.
Reiter and Mahmood Sharif
- Abstract summary: We find that conventional metrics measuring targeted and untargeted robustness do not appropriately reflect a model's ability to withstand attacks from one set of source classes to another set of target classes.
We propose a new metric, termed group-based robustness, that complements existing metrics and is better-suited for evaluating model performance in certain attack scenarios.
We show that with comparable success rates, finding evasive samples using our new loss functions saves by a factor as large as the number of targeted classes.
- Score: 16.376584375681812
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine-learning models are known to be vulnerable to evasion attacks that
perturb model inputs to induce misclassifications. In this work, we identify
real-world scenarios where the true threat cannot be assessed accurately by
existing attacks. Specifically, we find that conventional metrics measuring
targeted and untargeted robustness do not appropriately reflect a model's
ability to withstand attacks from one set of source classes to another set of
target classes. To address the shortcomings of existing methods, we formally
define a new metric, termed group-based robustness, that complements existing
metrics and is better-suited for evaluating model performance in certain attack
scenarios. We show empirically that group-based robustness allows us to
distinguish between models' vulnerability against specific threat models in
situations where traditional robustness metrics do not apply. Moreover, to
measure group-based robustness efficiently and accurately, we 1) propose two
loss functions and 2) identify three new attack strategies. We show empirically
that with comparable success rates, finding evasive samples using our new loss
functions saves computation by a factor as large as the number of targeted
classes, and finding evasive samples using our new attack strategies saves time
by up to 99\% compared to brute-force search methods. Finally, we propose a
defense method that increases group-based robustness by up to 3.52$\times$.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Resisting Deep Learning Models Against Adversarial Attack
Transferability via Feature Randomization [17.756085566366167]
We propose a feature randomization-based approach that resists eight adversarial attacks targeting deep learning models.
Our methodology can secure the target network and resists adversarial attack transferability by over 60%.
arXiv Detail & Related papers (2022-09-11T20:14:12Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
We propose a new attack method, called system, which can exploit the membership information from the whole training process of the target model.
Our attack achieves at least 6$times$ higher true-positive rate at a low false-positive rate of 0.1% than existing methods.
arXiv Detail & Related papers (2022-08-31T16:02:26Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Feature Partitioning for Robust Tree Ensembles and their Certification
in Adversarial Scenarios [8.300942601020266]
We focus on evasion attacks, where a model is trained in a safe environment and exposed to attacks at test time.
We propose a model-agnostic strategy that builds a robust ensemble by training its basic models on feature-based partitions of the given dataset.
Our algorithm guarantees that the majority of the models in the ensemble cannot be affected by the attacker.
arXiv Detail & Related papers (2020-04-07T12:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.