論文の概要: Rapid-INR: Storage Efficient CPU-free DNN Training Using Implicit Neural Representation
- arxiv url: http://arxiv.org/abs/2306.16699v3
- Date: Tue, 23 Apr 2024 23:20:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 16:34:44.613693
- Title: Rapid-INR: Storage Efficient CPU-free DNN Training Using Implicit Neural Representation
- Title(参考訳): Rapid-INR: 命令型ニューラル表現を用いたCPUフリーDNNトレーニング
- Authors: Hanqiu Chen, Hang Yang, Stephen Fitzmeyer, Cong Hao,
- Abstract要約: Implicit Neural Representation (INR) は、複雑な形状や物体を、その形状や表面構造を明確に定義せずに表現するための革新的なアプローチである。
従来の研究では、画像圧縮のINRとしてニューラルネットワークを使用することの有効性が実証されており、JPEGのような従来の手法に匹敵する性能を示している。
本稿では、画像のエンコーディングと圧縮にINRを利用する新しいアプローチであるRapid-INRを紹介し、コンピュータビジョンタスクにおけるニューラルネットワークトレーニングを高速化する。
- 参考スコア(独自算出の注目度): 7.539498729072623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representation (INR) is an innovative approach for representing complex shapes or objects without explicitly defining their geometry or surface structure. Instead, INR represents objects as continuous functions. Previous research has demonstrated the effectiveness of using neural networks as INR for image compression, showcasing comparable performance to traditional methods such as JPEG. However, INR holds potential for various applications beyond image compression. This paper introduces Rapid-INR, a novel approach that utilizes INR for encoding and compressing images, thereby accelerating neural network training in computer vision tasks. Our methodology involves storing the whole dataset directly in INR format on a GPU, mitigating the significant data communication overhead between the CPU and GPU during training. Additionally, the decoding process from INR to RGB format is highly parallelized and executed on-the-fly. To further enhance compression, we propose iterative and dynamic pruning, as well as layer-wise quantization, building upon previous work. We evaluate our framework on the image classification task, utilizing the ResNet-18 backbone network and three commonly used datasets with varying image sizes. Rapid-INR reduces memory consumption to only about 5% of the original dataset size in RGB format and achieves a maximum 6$\times$ speedup over the PyTorch training pipeline, as well as a maximum 1.2x speedup over the DALI training pipeline, with only a marginal decrease in accuracy. Importantly, Rapid-INR can be readily applied to other computer vision tasks and backbone networks with reasonable engineering efforts. Our implementation code is publicly available at https://github.com/sharc-lab/Rapid-INR.
- Abstract(参考訳): Implicit Neural Representation (INR) は、複雑な形状や物体を、その形状や表面構造を明確に定義せずに表現するための革新的なアプローチである。
代わりに、INRはオブジェクトを連続関数として表現する。
従来の研究では、画像圧縮のINRとしてニューラルネットワークを使用することの有効性が実証されており、JPEGのような従来の手法に匹敵する性能を示している。
しかし、INRは画像圧縮以外の様々な応用の可能性を秘めている。
本稿では、画像のエンコーディングと圧縮にINRを利用する新しいアプローチであるRapid-INRを紹介し、コンピュータビジョンタスクにおけるニューラルネットワークトレーニングを高速化する。
我々の手法では、トレーニング中のCPUとGPU間の重要なデータ通信オーバーヘッドを軽減するため、データセット全体をGPU上でINR形式で直接保存する。
さらに、INRからRGBフォーマットへの復号処理は高度に並列化され、オンザフライで実行される。
圧縮をさらに強化するため,従来の作業に基づいて,反復的かつ動的プルーニングとレイヤワイド量子化を提案する。
本稿では、ResNet-18バックボーンネットワークと、画像サイズが異なる3つの一般的なデータセットを用いて、画像分類タスクの枠組みを評価する。
Rapid-INRは、RGBフォーマットのオリジナルのデータセットサイズの約5%までメモリ消費を削減し、PyTorchトレーニングパイプラインの最大6$\times$スピードアップ、DALIトレーニングパイプラインの最大1.2倍のスピードアップを実現し、精度はわずかに低下する。
重要なことに、Rapid-INRは他のコンピュータビジョンタスクやバックボーンネットワークに適切なエンジニアリング努力で容易に適用できる。
実装コードはhttps://github.com/sharc-lab/Rapid-INR.comで公開されています。
関連論文リスト
- Residual-INR: Communication Efficient On-Device Learning Using Implicit Neural Representation [3.8419570843262054]
Residual-INRはフォグコンピューティングに基づく通信効率の高いデバイス上での学習フレームワークである。
データ転送を最大5.16倍に削減する。
また、CPUを使わずにデバイス上での学習を加速し、精度を犠牲にすることなく最大2.9倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-08-10T19:31:21Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
強調された暗黙的ニューラルビデオ表現であるNeRV++のニューラル表現を導入する。
NeRV++は、オリジナルのNeRVデコーダアーキテクチャよりも単純だが効果的な拡張である。
提案手法をUVG,MCL JVC,Bunnyのデータセット上で評価し,INRによる映像圧縮の競合性を実現する。
論文 参考訳(メタデータ) (2024-02-28T13:00:32Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
ニューラルインシシット辞書(NID)を学習することで、データとトレーニング効率の両方を達成する汎用INRフレームワークを提案する。
我々のNIDは、所望の関数空間にまたがるように調整された座標ベースのImpworksのグループを組み立てる。
実験の結果,NIDは最大98%の入力データで2次元画像や3次元シーンの再現を2桁高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-08T05:07:19Z) - Neural Residual Flow Fields for Efficient Video Representations [5.904082461511478]
入射神経表現(INR)は、画像、ビデオ、3D形状などの信号を表現するための強力なパラダイムとして登場した。
本稿では,データ冗長性を明示的に取り除き,ビデオの表現と圧縮を行う新しいINR手法を提案する。
本稿では,提案手法がベースライン法よりも有意差で優れていることを示す。
論文 参考訳(メタデータ) (2022-01-12T06:22:09Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
畳み込みニューラルネットワーク(CNN)は過去10年間で驚くべき進歩を遂げてきた。
CNNはRGBピクセルから直接データの堅牢な表現を学習することができる。
近年,圧縮領域から直接学習できる深層学習手法が注目されている。
論文 参考訳(メタデータ) (2020-12-26T15:00:10Z) - Adversarial Generation of Continuous Images [31.92891885615843]
本稿では,INRに基づく画像デコーダ構築のための2つの新しいアーキテクチャ手法を提案する。
私たちは、最先端の連続画像GANを構築するためにそれらを使用します。
提案したINR-GANアーキテクチャは連続画像生成装置の性能を数倍改善する。
論文 参考訳(メタデータ) (2020-11-24T11:06:40Z) - RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference [24.351577383531616]
RNNPoolは、リカレントニューラルネットワーク(RNN)に基づく新しいプール演算子である。
RNNPoolレイヤは、画像分類や顔検出といった標準的な視覚タスクに適用した場合、MobileNetsやDenseNetのようなさまざまなアーキテクチャの複数のブロックを効果的に置き換えることができる。
我々は、RNNPoolを標準のS3FDアーキテクチャで使用し、256KB未満のRAMを持つARM Cortex-M4クラスマイクロコントローラの最先端MAPを実現する。
論文 参考訳(メタデータ) (2020-02-27T05:22:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。