論文の概要: Towards Optimal Randomized Strategies in Adversarial Example Game
- arxiv url: http://arxiv.org/abs/2306.16738v1
- Date: Thu, 29 Jun 2023 07:29:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 14:28:50.406206
- Title: Towards Optimal Randomized Strategies in Adversarial Example Game
- Title(参考訳): 逆例ゲームにおける最適ランダム化戦略に向けて
- Authors: Jiahao Xie, Chao Zhang, Weijie Liu, Wensong Bai, Hui Qian
- Abstract要約: 敵対的なサンプル攻撃に対するディープニューラルネットワークモデルの脆弱性は、多くの人工知能アプリケーションにおいて実践的な課題である。
確率分布空間上の新しい無限次元連続時間フローを用いて問題をモデル化するFRATと呼ばれるアルゴリズムを提案する。
我々は、FRATの連続時間制限がディフェンダーとアタッカーによって形成されたゼロサムゲームにおいて混合ナッシュ平衡に収束することを証明する。
- 参考スコア(独自算出の注目度): 13.287949447721115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vulnerability of deep neural network models to adversarial example
attacks is a practical challenge in many artificial intelligence applications.
A recent line of work shows that the use of randomization in adversarial
training is the key to find optimal strategies against adversarial example
attacks. However, in a fully randomized setting where both the defender and the
attacker can use randomized strategies, there are no efficient algorithm for
finding such an optimal strategy. To fill the gap, we propose the first
algorithm of its kind, called FRAT, which models the problem with a new
infinite-dimensional continuous-time flow on probability distribution spaces.
FRAT maintains a lightweight mixture of models for the defender, with
flexibility to efficiently update mixing weights and model parameters at each
iteration. Furthermore, FRAT utilizes lightweight sampling subroutines to
construct a random strategy for the attacker. We prove that the continuous-time
limit of FRAT converges to a mixed Nash equilibria in a zero-sum game formed by
a defender and an attacker. Experimental results also demonstrate the
efficiency of FRAT on CIFAR-10 and CIFAR-100 datasets.
- Abstract(参考訳): 敵対的なサンプル攻撃に対するディープニューラルネットワークモデルの脆弱性は多くの人工知能アプリケーションにおいて実践的な課題である。
最近の研究は、敵の訓練におけるランダム化の利用が、敵のサンプル攻撃に対する最適な戦略を見つける鍵であることを示している。
しかし、ディフェンダーと攻撃者がランダム化戦略を使用できる完全にランダム化された環境では、そのような最適な戦略を見つけるための効率的なアルゴリズムは存在しない。
このギャップを埋めるために、確率分布空間上の新しい無限次元連続時間フローを用いて問題をモデル化するFRATと呼ばれるアルゴリズムを提案する。
FRATはディフェンダー用の軽量な混合モデルを維持し、各イテレーションにおける混合重みとモデルパラメータを効率的に更新する柔軟性を備えている。
さらに、FRATは軽量サンプリングサブルーチンを使用して攻撃者のためのランダムな戦略を構築する。
我々は、FRATの連続時間制限がディフェンダーとアタッカーによって形成されたゼロサムゲームにおいて混合ナッシュ平衡に収束することを証明する。
CIFAR-10およびCIFAR-100データセット上でのFRATの効率も実験により実証された。
関連論文リスト
- Discriminative Adversarial Unlearning [40.30974185546541]
我々は、min-max最適化パラダイムの確立した原則に基づいて、新しい機械学習フレームワークを導入する。
我々は、訓練されたモデルから特定のサンプルの学習を容易にするために、強力なメンバーシップ推論攻撃(MIA)の能力を利用する。
提案アルゴリズムは,スクラッチから再学習する理想的なベンチマークを,ランダムサンプルの忘れ方とクラスワイドの忘れ方の両方に近似する。
論文 参考訳(メタデータ) (2024-02-10T03:04:57Z) - Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
良く設計された敵防衛戦略は、敵の例に対するディープラーニングモデルの堅牢性を改善することができる。
防御モデルを考えると、計算負担が少なく、ロバストな精度の低い効率的な敵攻撃を更に活用する必要がある。
本稿では,防衛モデルに対する準最適攻撃の自動探索を実現する自動対向攻撃最適化設計のための多目的メメティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-15T03:03:05Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Mixed Strategies for Security Games with General Defending Requirements [37.02840909260615]
Stackelbergのセキュリティゲームはディフェンダーとアタッカーの間で行われ、ディフェンダーは複数のターゲットに限られたリソースを割り当てる必要がある。
そこで本研究では,ごく少数の戦略のみを用いる混合戦略を計算し,効率的な近似パチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-26T08:56:39Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Dynamic Defense Approach for Adversarial Robustness in Deep Neural
Networks via Stochastic Ensemble Smoothed Model [12.858728363390703]
本稿ではランダムスムージングの防御法とモデルスムージングに基づくアンサンブルスムージングについて述べる。
ホワイトボックス攻撃下のアンサンブルモデルの極端な転送可能性と脆弱性を扱う。
論文 参考訳(メタデータ) (2021-05-06T16:48:52Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。