論文の概要: Harnessing the Power of Hugging Face Transformers for Predicting Mental
Health Disorders in Social Networks
- arxiv url: http://arxiv.org/abs/2306.16891v2
- Date: Fri, 30 Jun 2023 07:45:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 14:43:42.162276
- Title: Harnessing the Power of Hugging Face Transformers for Predicting Mental
Health Disorders in Social Networks
- Title(参考訳): 社会的ネットワークにおける精神保健障害予測のためのハグ・フェイス・トランスフォーマーの力
- Authors: Alireza Pourkeyvan, Ramin Safa, Ali Sorourkhah
- Abstract要約: 本研究では、ユーザ生成データを用いて精神疾患の症状を予測する方法について検討する。
本研究は,Hugging Faceの4種類のBERTモデルと標準的な機械学習技術を比較した。
新しいモデルは、最大97%の精度で以前のアプローチより優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Early diagnosis of mental disorders and intervention can facilitate the
prevention of severe injuries and the improvement of treatment results. Using
social media and pre-trained language models, this study explores how
user-generated data can be used to predict mental disorder symptoms. Our study
compares four different BERT models of Hugging Face with standard machine
learning techniques used in automatic depression diagnosis in recent
literature. The results show that new models outperform the previous approach
with an accuracy rate of up to 97%. Analyzing the results while complementing
past findings, we find that even tiny amounts of data (like users' bio
descriptions) have the potential to predict mental disorders. We conclude that
social media data is an excellent source of mental health screening, and
pre-trained models can effectively automate this critical task.
- Abstract(参考訳): 精神疾患の早期診断と介入は重傷の予防と治療成績の改善を促進する。
ソーシャルメディアと事前学習言語モデルを用いて、ユーザ生成データを用いて精神疾患の症状を予測する方法について検討した。
近年の研究では,Hugging Faceの4種類のBERTモデルと,うつ病の自動診断に使用される標準的な機械学習技術を比較した。
その結果、新しいモデルは97%の精度で以前の手法より優れていることがわかった。
過去の知見を補完しながら結果を分析した結果、わずかなデータ(ユーザーの生体情報など)でも精神疾患を予測できる可能性があることがわかった。
ソーシャルメディアデータはメンタルヘルススクリーニングの優れた情報源であり、事前訓練されたモデルは、この重要なタスクを効果的に自動化することができると結論づける。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - AI-Driven Early Mental Health Screening with Limited Data: Analyzing Selfies of Pregnant Women [32.514036618021244]
うつ病や不安障害は世界中で何百万もの人に影響を与え、精神疾患の重荷に大きく貢献する。
早期スクリーニングは、精神疾患のタイムリーな同定が治療成績を大幅に改善するので、効果的な介入に不可欠である。
本研究は、顔中心の自撮りを与えられたユビキタスな抑うつ不安スクリーニングのためのAIモデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-10-07T19:34:25Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
この研究は、抑うつのリスクがある個人を特定するために、ロマタイズド・シンハラのソーシャルメディアデータの利用を探求する。
言語パターン、感情、行動の手がかりを分析することにより、抑うつ症状の自動スクリーニングのための機械学習ベースのフレームワークが提示される。
論文 参考訳(メタデータ) (2024-03-28T10:31:09Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
メンタルヘルスの検出や予測のための機械学習モデルの開発では、研究が増加している。
本研究では,マルチタスク学習に基づくバイアス緩和手法を不安予測モデルに適用し,公平性分析を行うことを目的とする。
分析の結果、我々の不安予測ベースモデルでは、年齢、収入、民族性、そして参加者が米国で生まれたかどうかに偏りが生じていた。
論文 参考訳(メタデータ) (2022-08-07T02:28:32Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。