Heisenberg-limited quantum metrology using 100-photon Fock states
- URL: http://arxiv.org/abs/2306.16919v1
- Date: Thu, 29 Jun 2023 13:12:26 GMT
- Title: Heisenberg-limited quantum metrology using 100-photon Fock states
- Authors: Xiaowei Deng and Sai Li and Zi-Jie Chen and Zhongchu Ni and Yanyan Cai
and Jiasheng Mai and Libo Zhang and Pan Zheng and Haifeng Yu and Chang-Ling
Zou and Song Liu and Fei Yan and Yuan Xu and Dapeng Yu
- Abstract summary: We develop a programmable photon number filter that efficiently generates Fock states with up to 100 photons in a high-quality superconducting microwave cavity.
We demonstrate a precision scaling close to the Heisenberg limit and achieve a maximum metrological gain of up to 14.8 dB.
- Score: 11.376914882465812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology has emerged as a promising avenue for surpassing the
limitations of classical mechanics in high-precision measurements. However, the
practical implementation of quantum metrology is hindered by the challenges of
manipulating exotic quantum states in large systems. Here, we propose and
demonstrate a hardware-efficient approach to achieve Heisenberg-limited quantum
metrology using large photon-number Fock states. We have developed a
programmable photon number filter that efficiently generates Fock states with
up to 100 photons in a high-quality superconducting microwave cavity. Using
these highly nontrivial states in displacement and phase measurements, we
demonstrate a precision scaling close to the Heisenberg limit and achieve a
maximum metrological gain of up to 14.8 dB. Our hardware-efficient quantum
metrology can be extended to mechanical and optical systems and provides a
practical solution for high metrological gain in bosonic quantum systems,
promising potential applications in radiometry and the search for new
particles.
Related papers
- Entanglement-enhanced quantum metrology: from standard quantum limit to Heisenberg limit [0.0]
Entanglement-enhanced quantum metrology explores the utilization of quantum entanglement to enhance measurement precision.
The rapid advancement of techniques for quantum manipulation and detection has enabled the generation, manipulation, and detection of multi-particle entangled states.
arXiv Detail & Related papers (2024-02-05T22:46:38Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Using Entangled Generalized Coherent States for Photonic Quantum
Metrology [0.0]
We present a scheme for improved parameter estimation by introducing entangled generalized coherent states.
These states show enhanced sensitivity beyond the classical and Heisenberg limits.
We also propose a scheme for experimentally generating certain entangled generalized coherent states.
arXiv Detail & Related papers (2023-05-17T17:00:52Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Variational Quantum Metrology with Loschmidt Echo [20.002455345052702]
We propose a scalable scheme with a symmetrical variational quantum circuit which, same as the Loschmidt echo, consists of a forward and a backward evolution.
We show that in this scheme the quantum Fisher information, which quantifies the precision limit, can be efficiently obtained from a measurement signal of the Loschmidt echo.
We experimentally implement the scheme on an ensemble of 10-spin quantum processor and successfully achieves a precision near the theoretical limit which outperforms the standard quantum limit with 12.4 dB.
arXiv Detail & Related papers (2022-11-22T14:21:59Z) - Resolution of 100 photons and quantum generation of unbiased random
numbers [0.0]
Quantum detection of light is mostly relegated to the microscale.
The ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications.
In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors.
arXiv Detail & Related papers (2022-05-02T21:34:01Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Non-Markovian effect on quantum optical metrology under dissipative
environment [1.6058099298620423]
Non-Markovian effects are shown to be effective in performing quantum optical metrology under locally dissipative environments.
Our work provides a recipe to realize ultrasensitive measurements in the presence of noise by utilizing non-Markovian effects.
arXiv Detail & Related papers (2020-02-09T14:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.