Entanglement-enhanced quantum metrology: from standard quantum limit to Heisenberg limit
- URL: http://arxiv.org/abs/2402.03572v3
- Date: Tue, 4 Jun 2024 01:42:20 GMT
- Title: Entanglement-enhanced quantum metrology: from standard quantum limit to Heisenberg limit
- Authors: Jiahao Huang, Min Zhuang, Chaohong Lee,
- Abstract summary: Entanglement-enhanced quantum metrology explores the utilization of quantum entanglement to enhance measurement precision.
The rapid advancement of techniques for quantum manipulation and detection has enabled the generation, manipulation, and detection of multi-particle entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement-enhanced quantum metrology explores the utilization of quantum entanglement to enhance measurement precision. When particles in a probe are prepared into a quantum entangled state, they collectively accumulate information about the physical quantity to be measured, leading to an improvement in measurement precision beyond the standard quantum limit and approaching the Heisenberg limit. The rapid advancement of techniques for quantum manipulation and detection has enabled the generation, manipulation, and detection of multi-particle entangled states in synthetic quantum systems such as cold atoms and trapped ions. This article aims to review and illustrate the fundamental principles and experimental progresses that demonstrate multi-particle entanglement for quantum metrology, as well as discuss the potential applications of entanglement-enhanced quantum sensors.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Strong quantum metrological limit from many-body physics [0.0]
We find a universal speed limit set by the Lieb-Robinson light cone for the quantum Fisher information growth to characterize the metrological potential of quantum resource states.
It reveals a fundamental constraint for reaching the Heisenberg limit in a generic many-body lattice system with bounded one-site energy.
arXiv Detail & Related papers (2023-01-28T07:08:35Z) - Effective information bounds in modified quantum mechanics [0.03492633112489883]
We show that quantum systems undergo corrections to the quantum speed limit which, in turn, imply the modification of the Heisenberg limit for parameter estimation.
For some nonlocal models inspired by quantum gravity, the bounds are found to oscillate in time, an effect that could be tested in future high-precision quantum experiments.
arXiv Detail & Related papers (2022-11-16T21:37:04Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.