論文の概要: MIS-FM: 3D Medical Image Segmentation using Foundation Models Pretrained
on a Large-Scale Unannotated Dataset
- arxiv url: http://arxiv.org/abs/2306.16925v1
- Date: Thu, 29 Jun 2023 13:22:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 13:18:20.821814
- Title: MIS-FM: 3D Medical Image Segmentation using Foundation Models Pretrained
on a Large-Scale Unannotated Dataset
- Title(参考訳): MIS-FM:大規模無注釈データセットを用いた基礎モデルを用いた3次元医用画像分割
- Authors: Guotai Wang, Jianghao Wu, Xiangde Luo, Xinglong Liu, Kang Li, Shaoting
Zhang
- Abstract要約: 本稿では,3次元セグメンテーションモデルを事前学習するための,VF(Volume Fusion)と呼ばれる新たな自己教師型学習戦略を提案する。
VFは、手動のアノテーションなしで自己教師付きセグメンテーションタスクとして定式化される各ボクセルの融合係数を予測するようモデルを強制する。
頭部, 頸部臓器, 胸部, 腹部臓器など, 下流領域の異なる部位を対象とする実験により, 我々の事前訓練モデルがスクラッチからトレーニングに優れていたことが判明した。
- 参考スコア(独自算出の注目度): 14.823114726604853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretraining with large-scale 3D volumes has a potential for improving the
segmentation performance on a target medical image dataset where the training
images and annotations are limited. Due to the high cost of acquiring
pixel-level segmentation annotations on the large-scale pretraining dataset,
pretraining with unannotated images is highly desirable. In this work, we
propose a novel self-supervised learning strategy named Volume Fusion (VF) for
pretraining 3D segmentation models. It fuses several random patches from a
foreground sub-volume to a background sub-volume based on a predefined set of
discrete fusion coefficients, and forces the model to predict the fusion
coefficient of each voxel, which is formulated as a self-supervised
segmentation task without manual annotations. Additionally, we propose a novel
network architecture based on parallel convolution and transformer blocks that
is suitable to be transferred to different downstream segmentation tasks with
various scales of organs and lesions. The proposed model was pretrained with
110k unannotated 3D CT volumes, and experiments with different downstream
segmentation targets including head and neck organs, thoracic/abdominal organs
showed that our pretrained model largely outperformed training from scratch and
several state-of-the-art self-supervised training methods and segmentation
models. The code and pretrained model are available at
https://github.com/openmedlab/MIS-FM.
- Abstract(参考訳): 大規模3Dボリュームでの事前トレーニングは、トレーニング画像とアノテーションが制限されたターゲットの医療画像データセットにおけるセグメンテーション性能を改善する可能性がある。
大規模事前学習データセットにおける画素レベルのセグメンテーションアノテーションの取得コストが高いため,未指定画像による事前学習が望ましい。
本研究では,3次元セグメンテーションモデルを事前学習するための,VF(Volume Fusion)と呼ばれる新しい自己教師型学習戦略を提案する。
予め定義された離散的融合係数のセットに基づいて、前景のサブボリュームから背景のサブボリュームへのランダムなパッチを融合させ、手動アノテーションなしで自己教師付き分割タスクとして定式化された各ボクセルの融合係数をモデルに予測させる。
さらに,臓器や病変のスケールの異なる下流セグメンテーションタスクに移行するのに適した並列畳み込みと変圧器ブロックに基づく新しいネットワークアーキテクチャを提案する。
頭頸部,胸腹部,胸部,腹部など,異なる下流領域を対象とする実験により,本モデルがスクラッチからトレーニングに優れており,また,いくつかの最先端の自己管理訓練方法やセグメンテーションモデルも有意な成績を示した。
コードと事前トレーニングされたモデルはhttps://github.com/openmedlab/mis-fmで入手できる。
関連論文リスト
- FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
我々は,閉鎖語彙データセットのトレーニングモデルによって伝統的に解決されるイメージセグメンテーションの課題に焦点をあてる。
我々は、ゼロショットのオープン語彙セグメンテーションのために、異なる、比較的小さなオープンソース基盤モデルを活用している。
当社のアプローチ(別名FreeSeg-Diff)は、トレーニングに依存しないもので、Pascal VOCとCOCOデータセットの両方で多くのトレーニングベースのアプローチより優れています。
論文 参考訳(メタデータ) (2024-03-29T10:38:25Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image
Analysis [7.214195462426705]
医用画像解析のためのプロキシタスクを調整した,新たな自己教師型学習フレームワークを提案する。
5,050個のCT画像に対して,提案手法の事前学習を成功させた。
私たちのモデルは現在、MSDとBTCV両方のデータセットの公開テストリーダーボードで最先端(すなわち第1位)です。
論文 参考訳(メタデータ) (2021-11-29T18:45:20Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
医用画像のセグメンテーションにおいて、教師付きディープネットワークの成功は、豊富なラベル付きデータを必要とするコストが伴う。
本稿では,ボリューム画像分割ペアを合成可能なデータ拡張のための,新しいボリューム自己教師型学習法を提案する。
我々の研究の中心的信条は、ワンショット生成学習と自己指導型学習戦略の併用による恩恵を受けている。
論文 参考訳(メタデータ) (2021-10-05T15:28:42Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
対象臓器アノテーションの限られたトレーニングサンプルを用いて, 正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
U-Netのようなネットワークは、サポートデータの2次元スライスとクエリイメージの関係を学習することでセグメンテーションを予測するように設計されている。
異なる臓器のアノテーションを付加した3つの3次元CTデータセットを用いて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2020-11-19T01:44:55Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
クロスドメイン・ショット分類タスク(CD-FSC)は、データセットで表されるドメインをまたいで一般化する要件と、少数ショット分類を組み合わせたものである。
既存のFSCモデルに対する新しいトレーニング手法を提案する。
説明誘導学習はモデル一般化を効果的に改善することを示す。
論文 参考訳(メタデータ) (2020-07-17T07:28:08Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。