論文の概要: Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2011.09608v1
- Date: Thu, 19 Nov 2020 01:44:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 20:24:41.965848
- Title: Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation
- Title(参考訳): 3次元医用画像セグメンテーションのための双方向RNNに基づくFew Shot Learning
- Authors: Soopil Kim, Sion An, Philip Chikontwe, Sang Hyun Park
- Abstract要約: 対象臓器アノテーションの限られたトレーニングサンプルを用いて, 正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
U-Netのようなネットワークは、サポートデータの2次元スライスとクエリイメージの関係を学習することでセグメンテーションを予測するように設計されている。
異なる臓器のアノテーションを付加した3つの3次元CTデータセットを用いて,提案モデルの評価を行った。
- 参考スコア(独自算出の注目度): 11.873435088539459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation of organs of interest in 3D medical images is necessary for
accurate diagnosis and longitudinal studies. Though recent advances using deep
learning have shown success for many segmentation tasks, large datasets are
required for high performance and the annotation process is both time consuming
and labor intensive. In this paper, we propose a 3D few shot segmentation
framework for accurate organ segmentation using limited training samples of the
target organ annotation. To achieve this, a U-Net like network is designed to
predict segmentation by learning the relationship between 2D slices of support
data and a query image, including a bidirectional gated recurrent unit (GRU)
that learns consistency of encoded features between adjacent slices. Also, we
introduce a transfer learning method to adapt the characteristics of the target
image and organ by updating the model before testing with arbitrary support and
query data sampled from the support data. We evaluate our proposed model using
three 3D CT datasets with annotations of different organs. Our model yielded
significantly improved performance over state-of-the-art few shot segmentation
models and was comparable to a fully supervised model trained with more target
training data.
- Abstract(参考訳): 3次元医用画像における臓器の分離は, 正確な診断と縦断的研究に必要である。
ディープラーニングを用いた最近の進歩は、多くのセグメンテーションタスクで成功をおさめているが、大規模なデータセットはハイパフォーマンスのために必要であり、アノテーションプロセスは時間消費と労働集約の両方である。
本稿では,対象臓器アノテーションの限られたトレーニングサンプルを用いて,正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
これを実現するために、U-Netライクネットワークは、隣接するスライス間の符号化された特徴の一貫性を学習する双方向ゲートリカレントユニット(GRU)を含む、サポートデータの2次元スライスとクエリ画像の関係を学習することによりセグメンテーションを予測するように設計されている。
また,対象画像とオルガンの特性を,任意にサポートしてテストする前にモデルを更新し,サポートデータからサンプリングした問合せデータを問合せすることで適応させる転送学習手法を提案する。
異なる臓器のアノテーションを用いた3次元ctデータセットを用いて,提案モデルを評価した。
我々のモデルは、最先端のいくつかのショットセグメンテーションモデルよりも大幅に性能を向上し、より多くのターゲットトレーニングデータで訓練された完全教師付きモデルに匹敵する結果を得た。
関連論文リスト
- Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - Enhancing Single-Slice Segmentation with 3D-to-2D Unpaired Scan Distillation [21.69523493833432]
本研究では, 事前学習した3次元モデルを用いて, 2次元単一スライスセグメンテーションを向上する新しい3D-to-2D蒸留フレームワークを提案する。
同じデータ入力を必要とする従来の知識蒸留法とは異なり、我々のアプローチでは、2次元の学生モデルをガイドするために、コントラストのない3次元CTスキャンを採用しています。
論文 参考訳(メタデータ) (2024-06-18T04:06:02Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - OneSeg: Self-learning and One-shot Learning based Single-slice
Annotation for 3D Medical Image Segmentation [36.50258132379276]
本稿では,各3次元画像の1つのスライスに注釈を付けることで,3次元医用画像セグメンテーションのための自己学習とワンショット学習に基づくフレームワークを提案する。
提案手法は,(1)3次元画像中の2次元スライス間の意味的対応を学習する再構成ネットワークの自己学習,(2)1ショット手動アノテーションのための1つのスライスの代表的選択である。
我々の新しいフレームワークは、完全に教師された手法と比較して1%未満のアノテートデータで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-09-24T15:35:58Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。