論文の概要: UMASS_BioNLP at MEDIQA-Chat 2023: Can LLMs generate high-quality
synthetic note-oriented doctor-patient conversations?
- arxiv url: http://arxiv.org/abs/2306.16931v1
- Date: Thu, 29 Jun 2023 13:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 13:20:28.337545
- Title: UMASS_BioNLP at MEDIQA-Chat 2023: Can LLMs generate high-quality
synthetic note-oriented doctor-patient conversations?
- Title(参考訳): UMASS_BioNLP at MEDIQA-Chat 2023: LLMsは高品質なノート指向の医師と患者との会話を生成できるか?
- Authors: Junda Wang, Zonghai Yao, Avijit Mitra, Samuel Osebe, Zhichao Yang,
Hong Yu
- Abstract要約: 本稿では,タスクAとタスクCの共有タスクであるMEDIQA-Chat 2023に参加するUMASS_BioNLPチームについて述べる。
本稿では,特にタスクCに焦点をあて,高品質な会話データセットを生成するために,医師・患者ループと呼ばれる新しいLLM協調システムを提案する。
実験の結果, ROUGE, 医療コンセプトリコール, BLEU, 自己BLEUなどの自動測定値から, 適切な評価値が得られることがわかった。
- 参考スコア(独自算出の注目度): 5.858602838586936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents UMASS_BioNLP team participation in the MEDIQA-Chat 2023
shared task for Task-A and Task-C. We focus especially on Task-C and propose a
novel LLMs cooperation system named a doctor-patient loop to generate
high-quality conversation data sets. The experiment results demonstrate that
our approaches yield reasonable performance as evaluated by automatic metrics
such as ROUGE, medical concept recall, BLEU, and Self-BLEU. Furthermore, we
conducted a comparative analysis between our proposed method and ChatGPT and
GPT-4. This analysis also investigates the potential of utilizing cooperation
LLMs to generate high-quality datasets.
- Abstract(参考訳): 本稿では,タスクAとタスクCの共有タスクであるMEDIQA-Chat 2023に参加するUMASS_BioNLPチームについて述べる。
特にtask-cに着目し,質の高い会話データセットを生成するために,医師・患者連携ループと呼ばれる新しいllms協調システムを提案する。
実験の結果, ROUGE, 医療コンセプトリコール, BLEU, 自己BLEUなどの自動測定値から, 適切な評価値が得られることがわかった。
さらに,提案手法とChatGPT, GPT-4の比較分析を行った。
この分析は、高品質なデータセットを生成するために協調LLMを利用する可能性についても検討する。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
大規模言語モデル(LLM)による対話システムは、現在医療分野において潜在的に有望であることを示している。
本稿では,医療専門サービスのためのオムニ・メディカル・マルチエージェント・コラボレーション・フレームワークであるMedAideを提案する。
論文 参考訳(メタデータ) (2024-10-16T13:10:27Z) - HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations [23.09755446991835]
デジタル医療において、大きな言語モデル(LLM)は質問応答能力を高めるために主に利用されてきた。
本稿では,LLMヘルスケアチェーンの問合せ能力を評価するための新しいフレームワークであるHealthQを提案する。
論文 参考訳(メタデータ) (2024-09-28T23:59:46Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - EHR Interaction Between Patients and AI: NoteAid EHR Interaction [7.880641398866267]
本稿では, 患者教育を支援するために, ジェネレーティブLLMを用いた革新的アプローチである NoteAid EHR Interaction Pipeline を紹介する。
MADE医療ノートコレクションからMIMIC Discharge Summariesと876のインスタンスから10,000のインスタンスを含むデータセットを抽出し、NoteAid EHR Interaction Pipelineを通して2つのタスクを実行する。
LLM評価と64例の厳密な手作業によるデータセット全体の総合的な評価を通じて,患者教育におけるLLMの可能性を示す。
論文 参考訳(メタデータ) (2023-12-29T05:13:40Z) - Integrating UMLS Knowledge into Large Language Models for Medical
Question Answering [18.06960842747575]
大規模言語モデル(LLM)は強力なテキスト生成能力を示し、医療分野に前例のない革新をもたらした。
我々は、医療コミュニティにより良いサービスを提供することを目的として、UMLS(Unified Medical Language System)に基づく拡張LLMフレームワークを開発する。
ベンチマークモデルとしてLLaMa2-13b-chatとChatGPT-3.5を採用し、LiveQAテストセットから104の質問に対してROUGEスコアとBERTScoreを用いて自動評価を行う。
論文 参考訳(メタデータ) (2023-10-04T12:50:26Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
臨床テキストマイニングにおけるOpenAIのChatGPTの可能性を検討する。
本稿では,高品質な合成データを大量に生成する新たな学習パラダイムを提案する。
提案手法により,下流タスクの性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-03-08T03:56:31Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
大規模言語モデル(LLM)に基づくエンドツーエンド機械学習ソリューションを提案する。
KG構築プロセスで使用される物質は、疾患、因子、治療、および疾患を経験中に患者と共存する症状である。
提案手法の応用は加齢に伴う黄斑変性に対して実証される。
論文 参考訳(メタデータ) (2023-01-29T15:52:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。