論文の概要: Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering
- arxiv url: http://arxiv.org/abs/2411.09213v1
- Date: Thu, 14 Nov 2024 06:19:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:32.453217
- Title: Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering
- Title(参考訳): 医療質問応答のための検索補助生成システムの総合的・実践的評価
- Authors: Nghia Trung Ngo, Chien Van Nguyen, Franck Dernoncourt, Thien Huu Nguyen,
- Abstract要約: Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
- 参考スコア(独自算出の注目度): 70.44269982045415
- License:
- Abstract: Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs) in knowledge-intensive tasks such as those from medical domain. However, the sensitive nature of the medical domain necessitates a completely accurate and trustworthy system. While existing RAG benchmarks primarily focus on the standard retrieve-answer setting, they overlook many practical scenarios that measure crucial aspects of a reliable medical system. This paper addresses this gap by providing a comprehensive evaluation framework for medical question-answering (QA) systems in a RAG setting for these situations, including sufficiency, integration, and robustness. We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets for testing LLMs' ability to handle these specific scenarios. Utilizing MedRGB, we conduct extensive evaluations of both state-of-the-art commercial LLMs and open-source models across multiple retrieval conditions. Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents. We further analyze the LLMs' reasoning processes to provides valuable insights and future directions for developing RAG systems in this critical medical domain.
- Abstract(参考訳): 検索機能強化世代(RAG)は,医学領域からの知識集約的なタスクにおいて,大規模言語モデル(LLM)の性能を高めるための有望なアプローチとして登場した。
しかし、医療領域の繊細な性質は、完全に正確で信頼できるシステムを必要とする。
既存のRAGベンチマークは主に標準の検索・回答設定に重点を置いているが、信頼できる医療システムの重要な側面を計測する多くの実践的なシナリオを見落としている。
本稿では,医療質問応答システム(QA)の総合的な評価フレームワークをRAG設定で提供することにより,これらのギャップに対処する。
LLMがこれらのシナリオを扱う能力をテストするために、4つの医療QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
MedRGBを用いて,複数の検索条件において,最先端の商用LCMとオープンソースモデルの両方を広範囲に評価する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
我々は、この重要な医療領域におけるRAGシステムの開発に有用な洞察と今後の方向性を提供するため、LSMの推論プロセスをさらに分析する。
関連論文リスト
- MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
近年,Med-LVLM (Med-LVLMs) の進歩により,対話型診断ツールの新たな可能性が高まっている。
Med-LVLMは、しばしば事実の幻覚に悩まされ、誤った診断につながることがある。
我々は,Med-LVLMの現実性を高めるために,多目的マルチモーダルRAGシステムMMed-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-16T23:03:27Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions [42.73799041840482]
i-MedRAGは、過去の情報検索の試みに基づいてフォローアップクエリを反復的に要求するシステムである。
ゼロショットのi-MedRAGは、GPT-3.5上で既存のプロンプトエンジニアリングと微調整の方法をすべて上回ります。
i-MedRAGは、順応的にフォローアップクエリを問い合わせて推論チェーンを形成し、医学的な質問の詳細な分析を提供する。
論文 参考訳(メタデータ) (2024-08-01T17:18:17Z) - Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models [10.04914417538886]
大規模言語モデル(LLM)は、様々な言語タスクで顕著な成功を収めてきたが、幻覚や時間的ミスアライメントに悩まされている。
従来のtextitRetrieve-then-Read の代わりに,新しい textitDistill-Retrieve-Read フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-27T13:11:42Z) - Benchmarking Retrieval-Augmented Generation for Medicine [30.390132015614128]
大規模言語モデル(LLM)は、幅広い医療質問応答(QA)タスクにおいて最先端のパフォーマンスを達成した。
Retrieval-augmented Generation(RAG)は有望なソリューションであり、広く採用されている。
我々は、5つの医療QAデータセットから7,663の質問を含む第一種ベンチマークであるMIRAGE(Medicical Information Retrieval-Augmented Generation Evaluation)を提案する。
論文 参考訳(メタデータ) (2024-02-20T17:44:06Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - MedLM: Exploring Language Models for Medical Question Answering Systems [2.84801080855027]
大きな言語モデル(LLM)とその高度な生成能力は、様々なNLPタスクにおいて有望であることを示している。
本研究の目的は,医療用Q&Aにおける一般用および医療用蒸留機の性能を比較することである。
この知見は、医学領域における特定の用途における異なるLMの適合性に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2024-01-21T03:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。