論文の概要: DreamDiffusion: Generating High-Quality Images from Brain EEG Signals
- arxiv url: http://arxiv.org/abs/2306.16934v2
- Date: Fri, 30 Jun 2023 10:46:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 14:30:02.961159
- Title: DreamDiffusion: Generating High-Quality Images from Brain EEG Signals
- Title(参考訳): DreamDiffusion:脳波信号から高画質画像を生成する
- Authors: Yunpeng Bai, Xintao Wang, Yan-pei Cao, Yixiao Ge, Chun Yuan, Ying Shan
- Abstract要約: DreamDiffusionは、脳脳波(EEG)信号から直接高品質な画像を生成する新しい方法である。
提案手法は、ノイズ、限られた情報、個人差などの画像生成に脳波信号を使用する際の課題を克服する。
- 参考スコア(独自算出の注目度): 42.30835251506628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces DreamDiffusion, a novel method for generating
high-quality images directly from brain electroencephalogram (EEG) signals,
without the need to translate thoughts into text. DreamDiffusion leverages
pre-trained text-to-image models and employs temporal masked signal modeling to
pre-train the EEG encoder for effective and robust EEG representations.
Additionally, the method further leverages the CLIP image encoder to provide
extra supervision to better align EEG, text, and image embeddings with limited
EEG-image pairs. Overall, the proposed method overcomes the challenges of using
EEG signals for image generation, such as noise, limited information, and
individual differences, and achieves promising results. Quantitative and
qualitative results demonstrate the effectiveness of the proposed method as a
significant step towards portable and low-cost ``thoughts-to-image'', with
potential applications in neuroscience and computer vision. The code is
available here \url{https://github.com/bbaaii/DreamDiffusion}.
- Abstract(参考訳): 本稿では,脳脳波(EEG)信号から直接,思考をテキストに変換することなく高品質な画像を生成する新しい手法であるDreamDiffusionを紹介する。
DreamDiffusionは、事前訓練されたテキスト・ツー・イメージモデルを活用し、時間マスキング信号モデリングを使用して、効果的で堅牢なEEG表現のためにEEGエンコーダを事前訓練する。
さらに、この方法は、CLIPイメージエンコーダを活用して、EEG、テキスト、画像埋め込みを限られたEEGイメージペアでより良く整合させることができる。
総じて,提案手法は,ノイズや情報量,個人差などの画像生成に脳波信号を使用するという課題を克服し,有望な結果を得る。
定量的および定性的な結果から,提案手法の有効性は,コンピュータビジョンや神経科学に応用可能な,ポータブルで低コストな「思考からイメージ」に向けた重要なステップであることが示された。
コードはhttps://github.com/bbaaii/dreamdiffusion}で入手できる。
関連論文リスト
- BrainDreamer: Reasoning-Coherent and Controllable Image Generation from EEG Brain Signals via Language Guidance [14.003870853594972]
本稿では、新しいエンドツーエンド言語誘導型生成フレームワークBrainDreamerを紹介する。
BrainDreamerは人間の推論を模倣し、脳波(EEG)脳信号から高品質の画像を生成する。
非侵襲的な脳波データ取得によるノイズを除去する能力において,本手法は優れている。
論文 参考訳(メタデータ) (2024-09-21T05:16:31Z) - Guess What I Think: Streamlined EEG-to-Image Generation with Latent Diffusion Models [4.933734706786783]
EEGは低コストで非侵襲的でポータブルなニューロイメージング技術である。
EEGは、空間分解能が低く、ノイズやアーティファクトへの感受性が低いため、固有の課題を提示している。
脳波信号による潜伏拡散モデルの条件付けのための制御ネットアダプタに基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-17T19:07:13Z) - Mind's Eye: Image Recognition by EEG via Multimodal Similarity-Keeping Contrastive Learning [2.087148326341881]
本稿では,ゼロショット脳波画像分類のためのMUltimodal similarity-keeper contrastivE学習フレームワークを提案する。
我々は、脳波信号に適した多変量時系列エンコーダを開発し、正規化コントラスト脳波画像事前学習の有効性を評価する。
本手法は,200方向ゼロショット画像分類において,トップ1の精度が19.3%,トップ5の精度が48.8%の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T16:42:23Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
本研究は,脳波に基づく深部表現の頑健な学習を行うための2段階の手法を提案する。
ディープラーニングアーキテクチャを用いて,3つのデータセットにまたがる特徴抽出パイプラインの一般化性を実証する。
本稿では,未知の画像を脳波空間に変換し,近似を用いて再構成する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-25T10:26:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - Decoding Natural Images from EEG for Object Recognition [8.411976038504589]
本稿では,脳波信号からの学習画像表現の実現可能性を示すための自己教師型フレームワークを提案する。
我々はトップ1の精度を15.6%、トップ5の精度を42.8%で達成し、200ウェイゼロショットタスクに挑戦する。
これらの発見は、実世界のシナリオにおける神経復号と脳-コンピュータインタフェースの貴重な洞察をもたらす。
論文 参考訳(メタデータ) (2023-08-25T08:05:37Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。