Universal Quantum Optimization with Cold Atoms in an Optical Cavity
- URL: http://arxiv.org/abs/2306.16943v1
- Date: Thu, 29 Jun 2023 13:42:19 GMT
- Title: Universal Quantum Optimization with Cold Atoms in an Optical Cavity
- Authors: Meng Ye, Ye Tian, Jian Lin, Yuchen Luo, Jiaqi You, Jiazhong Hu, Wenjun
Zhang, Wenlan Chen, Xiaopeng Li
- Abstract summary: We show the atom cavity system is universal for quantum optimization with arbitrary connectivity.
We consider a single-mode cavity and develop a Raman coupling scheme by which the engineered quantum Hamiltonian for atoms directly encodes number partition problems.
- Score: 14.568979066292918
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cold atoms in an optical cavity have been widely used for quantum simulations
of many-body physics, where the quantum control capability has been advancing
rapidly in recent years. Here, we show the atom cavity system is universal for
quantum optimization with arbitrary connectivity. We consider a single-mode
cavity and develop a Raman coupling scheme by which the engineered quantum
Hamiltonian for atoms directly encodes number partition problems (NPPs). The
programmability is introduced by placing the atoms at different positions in
the cavity with optical tweezers. The NPP solution is encoded in the ground
state of atomic qubits coupled through a photonic cavity mode, that can be
reached by adiabatic quantum computing (AQC). We construct an explicit mapping
for the 3-SAT and vertex cover problems to be efficiently encoded by the cavity
system, which costs linear overhead in the number of atomic qubits. The atom
cavity encoding is further extended to quadratic unconstrained binary
optimization (QUBO) problems. The encoding protocol is optimal in the cost of
atom number scaling with the number of binary degrees of freedom of the
computation problem. Our theory implies the atom cavity system is a promising
quantum optimization platform searching for practical quantum advantage.
Related papers
- Adaptive quantum optimization algorithms for programmable atom-cavity systems [6.508793834090864]
We show cold atoms in an optical cavity can be built as a universal quantum with programmable all-to-all interactions.
We find the success probability of the standard quantum approximate algorithm (QAOA) decays rapidly with the problem size.
Inspired by the counterdiabatic driving, we propose an adaptive ansatz of QAOA which releases the parameter freedom of the NPP Hamiltonian to match higher-order counterdiabatic terms.
arXiv Detail & Related papers (2024-06-11T08:37:31Z) - Quantum Computation Using Large Spin Qudits [0.0]
dissertation explores quantum computation using qudits encoded into large spins.
First, we delve into the generation of high-fidelity universal gate sets for quantum computation with qudits.
Next, we analyze schemes to encode a qubit in the large spin qudits for fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-05-13T16:19:31Z) - A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Distributed quantum computing with photons and atomic memories [0.0]
We propose a universal distributed quantum computing scheme based on photons and atomic-ensemble-based quantum memories.
Taking the established photonic advantages, we mediate two-qubit nonlinear interaction by converting photonic qubits into quantum memory states.
Our results show photon-atom network hybrid approach can be an alternative solution to universal quantum computing.
arXiv Detail & Related papers (2022-07-05T22:52:33Z) - Demonstration of multi-qubit entanglement and algorithms on a
programmable neutral atom quantum computer [0.0]
Neutral atom hyperfine qubits provide inherent scalability due to their identical characteristics, long coherence times, and ability to be trapped in dense multi-dimensional arrays.
We demonstrate several quantum algorithms on a programmable gate model neutral atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits.
arXiv Detail & Related papers (2021-12-29T15:02:43Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.