Adaptive quantum optimization algorithms for programmable atom-cavity systems
- URL: http://arxiv.org/abs/2406.07055v1
- Date: Tue, 11 Jun 2024 08:37:31 GMT
- Title: Adaptive quantum optimization algorithms for programmable atom-cavity systems
- Authors: Yuchen Luo, Xiaopeng Li, Jian Lin,
- Abstract summary: We show cold atoms in an optical cavity can be built as a universal quantum with programmable all-to-all interactions.
We find the success probability of the standard quantum approximate algorithm (QAOA) decays rapidly with the problem size.
Inspired by the counterdiabatic driving, we propose an adaptive ansatz of QAOA which releases the parameter freedom of the NPP Hamiltonian to match higher-order counterdiabatic terms.
- Score: 6.508793834090864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing quantum algorithms adaptive to specific constraints of near-term devices is an essential step towards practical quantum advantage. In a recent work [Phys. Rev. Lett. 131, 103601(2023)], we show cold atoms in an optical cavity can be built as a universal quantum optimizer with programmable all-to-all interactions, and the effective Hamiltonian for atoms directly encodes number partitioning problems (NPPs). Here, we numerically investigate the performance of quantum annealing (QA) and quantum approximate optimization algorithm (QAOA) to find the solution of NPP that is encoded in the ground state of atomic qubits. We find the success probability of the standard QA decays rapidly with the problem size. The optimized annealing path or inhomogeneous driving fields only lead to mild improvement on the success probability. Similarly, the standard QAOA always gets trapped in a false local minimum, and there is no significant performance improvement as we increase the depth of the quantum circuit. Inspired by the counterdiabatic driving, we propose an adaptive ansatz of QAOA which releases the parameter freedom of the NPP Hamiltonian to match higher-order counterdiabatic terms. Through numerical simulations, we find that our adaptive QAOA can achieve the optimal solution within very small circuit depth. It is thus worth paying the extra optimization cost of additional parameters for improving QAOA performance. Therefore, our adaptive QAOA provides a promising choice for programmable atom-cavity systems to demonstrate competitive computational power within its quantum coherence time.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
We propose fermionic quantum approximate optimization algorithm (FQAOA) for solving optimization problems with constraints.
FQAOA tackle the constrains issue by using fermion particle number preservation to intrinsically impose them throughout QAOA.
We provide a systematic guideline for designing the driver Hamiltonian for a given problem Hamiltonian with constraints.
arXiv Detail & Related papers (2023-01-25T18:36:58Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
We study the entanglement generated during the execution of ADAPT-QAOA.
By incrementally restricting this flexibility, we find that a larger amount of entanglement entropy at earlier stages coincides with faster convergence at later stages.
arXiv Detail & Related papers (2022-05-24T18:00:02Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
Variational quantum algorithms (VQAs) promise efficient use of near-term quantum computers.
We show how to optimally train a VQA for learning quantum states.
We propose the application of Gaussian kernels for quantum machine learning.
arXiv Detail & Related papers (2021-04-29T17:54:59Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.