Belief propagation as a partial decoder
- URL: http://arxiv.org/abs/2306.17142v2
- Date: Fri, 21 Jul 2023 08:32:04 GMT
- Title: Belief propagation as a partial decoder
- Authors: Laura Caune, Brendan Reid, Joan Camps, and Earl Campbell
- Abstract summary: We present a new two-stage decoder that accelerates the decoding cycle and boosts accuracy.
In the first stage, a partial decoder based on belief propagation is used to correct errors that occurred with high probability.
In the second stage, a conventional decoder corrects any remaining errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the fundamental challenges in enabling fault-tolerant quantum
computation is realising fast enough quantum decoders. We present a new
two-stage decoder that accelerates the decoding cycle and boosts accuracy. In
the first stage, a partial decoder based on belief propagation is used to
correct errors that occurred with high probability. In the second stage, a
conventional decoder corrects any remaining errors. We study the performance of
our two-stage decoder with simulations using the surface code under
circuit-level noise. When the conventional decoder is minimum-weight perfect
matching, adding the partial decoder decreases bandwidth requirements,
increases speed and improves logical accuracy. Specifically, we observe partial
decoding consistently speeds up the minimum-weight perfect matching stage by
between $2$x-$4$x on average depending on the parameter regime, and raises the
threshold from $0.94\%$ to $1.02\%$.
Related papers
- Generalizing the matching decoder for the Chamon code [1.8416014644193066]
We implement a matching decoder for a three-dimensional, non-CSS, low-density parity check code known as the Chamon code.
We find that a generalized matching decoder that is augmented by a belief-propagation step prior to matching gives a threshold of 10.5% for depolarising noise.
arXiv Detail & Related papers (2024-11-05T19:00:12Z) - Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.
We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - How to choose a decoder for a fault-tolerant quantum computer? The speed
vs accuracy trade-off [48.73569522869751]
We show how to choose the best decoder for a given quantum architecture.
By analyzing the speed vs. accuracy tradeoff, we propose strategies to select the optimal stopping time.
We illustrate our protocol for the surface code equipped with a desktop implementation of the PyMatching decoder.
arXiv Detail & Related papers (2023-10-23T19:30:08Z) - Neural network decoder for near-term surface-code experiments [0.7100520098029438]
Neural-network decoders can achieve a lower logical error rate compared to conventional decoders.
These decoders require no prior information about the physical error rates, making them highly adaptable.
arXiv Detail & Related papers (2023-07-06T20:31:25Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
Quantum error-correcting codes (QECCs) can eliminate the negative effects of quantum noise, the major obstacle to the execution of quantum algorithms.
We propose a scalable, fast, and programmable neural decoding system to meet the requirements of FTQEC for rotated surface codes (RSC)
Our system achieves an extremely low decoding latency of 197 ns, and the accuracy results of our system are close to minimum weight perfect matching (MWPM)
arXiv Detail & Related papers (2023-05-25T06:23:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - A local pre-decoder to reduce the bandwidth and latency of quantum error
correction [3.222802562733787]
A fault-tolerant quantum computer will be supported by a classical decoding system interfacing with quantum hardware.
We propose a local pre-decoder', which makes greedy corrections to reduce the amount of syndrome data sent to a standard matching decoder.
We find substantial improvements in the runtime of the global decoder and the communication bandwidth by using the pre-decoder.
arXiv Detail & Related papers (2022-08-09T11:01:56Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.