TemperatureGAN: Generative Modeling of Regional Atmospheric Temperatures
- URL: http://arxiv.org/abs/2306.17248v3
- Date: Sat, 19 Oct 2024 18:14:20 GMT
- Title: TemperatureGAN: Generative Modeling of Regional Atmospheric Temperatures
- Authors: Emmanuel Balogun, Ram Rajagopal, Arun Majumdar,
- Abstract summary: generators are useful for estimating climate impacts on various sectors.
Projecting climate risk in various sectors requires generators that are accurate (statistical resemblance to ground-truth), reliable (do not produce erroneous examples), and efficient.
We introduce TemperatureGAN, a Generative Adversarial Network conditioned on months, locations, and time periods, to generate 2m above ground atmospheric temperatures at an hourly resolution.
- Score: 1.5554651050867165
- License:
- Abstract: Stochastic generators are useful for estimating climate impacts on various sectors. Projecting climate risk in various sectors, e.g. energy systems, requires generators that are accurate (statistical resemblance to ground-truth), reliable (do not produce erroneous examples), and efficient. Leveraging data from the North American Land Data Assimilation System, we introduce TemperatureGAN, a Generative Adversarial Network conditioned on months, locations, and time periods, to generate 2m above ground atmospheric temperatures at an hourly resolution. We propose evaluation methods and metrics to measure the quality of generated samples. We show that TemperatureGAN produces high-fidelity examples with good spatial representation and temporal dynamics consistent with known diurnal cycles.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Diffusion-Based Joint Temperature and Precipitation Emulation of Earth System Models [0.724847561444869]
We extend previous work that used a generative probabilistic diffusion model to emulate Earth system models (ESMs)
Our results show the outputs from our extended model closely resemble those from ESMs on various climate metrics including dry spells and hot streaks.
arXiv Detail & Related papers (2024-04-12T20:13:19Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
This paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale.
We employ a denoising diffusion probabilistic model conditioned on multiple LR climate variables.
Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
arXiv Detail & Related papers (2023-12-12T09:39:52Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
We train two "loosely conditioned" Generative Adversarial Networks (GANs) that emulate daily precipitation output from a fully coupled Earth system model.
GANs are trained to producetemporal samples: 32 days of precipitation over a 64x128 regular grid discretizing the globe.
Our trained GANs can rapidly generate numerous realizations at a vastly reduced computational expense.
arXiv Detail & Related papers (2021-04-29T02:10:08Z) - Using Long Short-Term Memory (LSTM) and Internet of Things (IoT) for
localized surface temperature forecasting in an urban environment [29.94873599943544]
This research proposed a framework based on Long Short-Term Memory (LSTM) deep learning network to generate day-ahead hourly temperature forecast with high spatial resolution.
A case study is shown which uses historical in-situ observations and Internet of Things (IoT) observations for New York City, USA.
arXiv Detail & Related papers (2021-02-04T21:21:21Z) - Clustering high dimensional meteorological scenarios: results and
performance index [2.4186361602373823]
We discuss the problem of grouping and selecting representatives of possible climate scenarios among climate simulations provided by RTE.
The data used is composed of temperature times series for 200 different possible scenarios on a grid of geographical locations in France.
We first show that the choice of the distance used for the clustering has a strong impact on the meaning of the results.
arXiv Detail & Related papers (2020-12-14T13:06:41Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.