論文の概要: Diagnosis Uncertain Models For Medical Risk Prediction
- arxiv url: http://arxiv.org/abs/2306.17337v1
- Date: Thu, 29 Jun 2023 23:36:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 13:52:20.048203
- Title: Diagnosis Uncertain Models For Medical Risk Prediction
- Title(参考訳): 医療リスク予測のための診断不確かさモデル
- Authors: Alexander Peysakhovich, Rich Caruana, Yin Aphinyanaphongs
- Abstract要約: 本研究は, 患者の診断にはアクセスできない, バイタルサイン, 検査値, 既往歴にアクセス可能な患者リスクモデルについて考察する。
このようなすべての原因のリスクモデルが、診断全体にわたって良い一般化を持つが、予測可能な障害モードを持つことが示される。
患者診断の不確実性から生じるリスク予測の不確実性を明示的にモデル化し,この問題に対する対策を提案する。
- 参考スコア(独自算出の注目度): 80.07192791931533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a patient risk models which has access to patient features such
as vital signs, lab values, and prior history but does not have access to a
patient's diagnosis. For example, this occurs in a model deployed at intake
time for triage purposes. We show that such `all-cause' risk models have good
generalization across diagnoses but have a predictable failure mode. When the
same lab/vital/history profiles can result from diagnoses with different risk
profiles (e.g. E.coli vs. MRSA) the risk estimate is a probability weighted
average of these two profiles. This leads to an under-estimation of risk for
rare but highly risky diagnoses. We propose a fix for this problem by
explicitly modeling the uncertainty in risk prediction coming from uncertainty
in patient diagnoses. This gives practitioners an interpretable way to
understand patient risk beyond a single risk number.
- Abstract(参考訳): 生命徴候,検査値,既往歴などの患者特徴にアクセスするが,患者の診断にはアクセスできない患者リスクモデルを検討する。
例えば、トリアージの目的でintake timeにデプロイされたモデルで発生する。
このような「すべての原因」リスクモデルは、診断をまたがる優れた一般化であるが、予測可能な障害モードを有することを示す。
同じラボ/ヴィタル/ヒストリープロファイルが異なるリスクプロファイル(例えば、E.coli vs. MRSA)で診断できる場合、リスク推定は2つのプロファイルの確率重み付き平均である。
これは稀であるが非常にリスクの高い診断のリスクを過小評価する。
患者診断の不確実性から生じるリスク予測の不確実性を明示的にモデル化し,この問題に対する対策を提案する。
これにより、実践者は単一のリスク番号を超えた患者のリスクを理解することができる。
関連論文リスト
- Towards Reducing Diagnostic Errors with Interpretable Risk Prediction [18.474645862061426]
特定診断のリスクの増大または低下を示す患者EHRデータ中の証拠片をLCMを用いて同定する方法を提案する。
私たちの究極の目標は、証拠へのアクセスを増やし、診断エラーを減らすことです。
論文 参考訳(メタデータ) (2024-02-15T17:05:48Z) - Domain constraints improve risk prediction when outcome data is missing [1.6840408099522377]
機械学習モデルにより, 検査対象者および検査対象者双方のリスクを正確に推定できることが示唆された。
本研究は,癌リスク予測のケーススタディに適用し,そのモデルが癌診断を予測していることを示す。
論文 参考訳(メタデータ) (2023-12-06T19:49:06Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Advances in Prediction of Readmission Rates Using Long Term Short Term
Memory Networks on Healthcare Insurance Data [1.454498931674109]
30日間の入院は長期にわたる医療問題であり、患者の死亡率や死亡率に影響を与え、年間数十億ドルの費用がかかる。
我々は、簡単に利用可能な保険データを利用できる双方向長短メモリ(LSTM)ネットワークを開発した。
以上の結果から, 機械学習モデルにより, 全患者に対して妥当な精度で入院リスクを予測できることが示唆された。
論文 参考訳(メタデータ) (2022-06-30T19:07:10Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
我々は、リスクスコアと機械学習モデルの両方の最高の特徴を組み合わせた、新たなリスクアセスメント方法論を作成するつもりです。
提案手法は、標準LRと同一の試験結果を得たが、より優れた解釈性とパーソナライゼーションを提供する。
個人予測の信頼性推定は誤分類率と大きな相関を示した。
論文 参考訳(メタデータ) (2021-10-15T19:33:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。