Qualitative Prediction of Multi-Agent Spatial Interactions
- URL: http://arxiv.org/abs/2307.00065v1
- Date: Fri, 30 Jun 2023 18:08:25 GMT
- Title: Qualitative Prediction of Multi-Agent Spatial Interactions
- Authors: Sariah Mghames, Luca Castri, Marc Hanheide, Nicola Bellotto
- Abstract summary: We present and benchmark three new approaches to model and predict multi-agent interactions in dense scenes.
The proposed solutions take into account static and dynamic context to predict individual interactions.
They exploit an input- and a temporal-attention mechanism, and are tested on medium and long-term time horizons.
- Score: 5.742409080817885
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deploying service robots in our daily life, whether in restaurants,
warehouses or hospitals, calls for the need to reason on the interactions
happening in dense and dynamic scenes. In this paper, we present and benchmark
three new approaches to model and predict multi-agent interactions in dense
scenes, including the use of an intuitive qualitative representation. The
proposed solutions take into account static and dynamic context to predict
individual interactions. They exploit an input- and a temporal-attention
mechanism, and are tested on medium and long-term time horizons. The first two
approaches integrate different relations from the so-called Qualitative
Trajectory Calculus (QTC) within a state-of-the-art deep neural network to
create a symbol-driven neural architecture for predicting spatial interactions.
The third approach implements a purely data-driven network for motion
prediction, the output of which is post-processed to predict QTC spatial
interactions. Experimental results on a popular robot dataset of challenging
crowded scenarios show that the purely data-driven prediction approach
generally outperforms the other two. The three approaches were further
evaluated on a different but related human scenarios to assess their
generalisation capability.
Related papers
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction.
We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions.
We also propose an approach to curate interaction-heavy scenarios from datasets.
arXiv Detail & Related papers (2024-01-15T14:43:40Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - A Neuro-Symbolic Approach for Enhanced Human Motion Prediction [5.742409080817885]
We propose a neuro-symbolic approach for human motion prediction (NeuroSyM)
NeuroSyM weights differently the interactions in the neighbourhood by leveraging an intuitive technique for spatial representation called qualitative Trajectory Calculus (QTC)
Experimental results show that the NeuroSyM approach outperforms in most cases the baseline architectures in terms of prediction accuracy.
arXiv Detail & Related papers (2023-04-23T20:11:40Z) - Parallel Reasoning Network for Human-Object Interaction Detection [53.422076419484945]
We propose a new transformer-based method named Parallel Reasoning Network(PR-Net)
PR-Net constructs two independent predictors for instance-level localization and relation-level understanding.
Our PR-Net has achieved competitive results on HICO-DET and V-COCO benchmarks.
arXiv Detail & Related papers (2023-01-09T17:00:34Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
We tackle the problem of detecting objects in 3D and forecasting their future motion in the context of self-driving.
To capture their spatial-temporal dependencies, we propose a recurrent neural network with a novel Transformer architecture.
Our model can be trained end-to-end, and runs in real-time.
arXiv Detail & Related papers (2020-08-13T14:30:12Z) - Robust Trajectory Forecasting for Multiple Intelligent Agents in Dynamic
Scene [11.91073327154494]
We present a novel method for robust trajectory forecasting of multiple agents in dynamic scenes.
The proposed method outperforms the state-of-the-art prediction methods in terms of prediction accuracy.
arXiv Detail & Related papers (2020-05-27T02:32:55Z) - AC-VRNN: Attentive Conditional-VRNN for Multi-Future Trajectory
Prediction [30.61190086847564]
We propose a generative architecture for multi-future trajectory predictions based on Conditional Variational Recurrent Neural Networks (C-VRNNs)
Human interactions are modeled with a graph-based attention mechanism enabling an online attentive hidden state refinement of the recurrent estimation.
arXiv Detail & Related papers (2020-05-17T17:21:23Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.