AC-VRNN: Attentive Conditional-VRNN for Multi-Future Trajectory
Prediction
- URL: http://arxiv.org/abs/2005.08307v2
- Date: Thu, 8 Jul 2021 08:23:15 GMT
- Title: AC-VRNN: Attentive Conditional-VRNN for Multi-Future Trajectory
Prediction
- Authors: Alessia Bertugli, Simone Calderara, Pasquale Coscia, Lamberto Ballan,
Rita Cucchiara
- Abstract summary: We propose a generative architecture for multi-future trajectory predictions based on Conditional Variational Recurrent Neural Networks (C-VRNNs)
Human interactions are modeled with a graph-based attention mechanism enabling an online attentive hidden state refinement of the recurrent estimation.
- Score: 30.61190086847564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anticipating human motion in crowded scenarios is essential for developing
intelligent transportation systems, social-aware robots and advanced video
surveillance applications. A key component of this task is represented by the
inherently multi-modal nature of human paths which makes socially acceptable
multiple futures when human interactions are involved. To this end, we propose
a generative architecture for multi-future trajectory predictions based on
Conditional Variational Recurrent Neural Networks (C-VRNNs). Conditioning
mainly relies on prior belief maps, representing most likely moving directions
and forcing the model to consider past observed dynamics in generating future
positions. Human interactions are modeled with a graph-based attention
mechanism enabling an online attentive hidden state refinement of the recurrent
estimation. To corroborate our model, we perform extensive experiments on
publicly-available datasets (e.g., ETH/UCY, Stanford Drone Dataset, STATS
SportVU NBA, Intersection Drone Dataset and TrajNet++) and demonstrate its
effectiveness in crowded scenes compared to several state-of-the-art methods.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Qualitative Prediction of Multi-Agent Spatial Interactions [5.742409080817885]
We present and benchmark three new approaches to model and predict multi-agent interactions in dense scenes.
The proposed solutions take into account static and dynamic context to predict individual interactions.
They exploit an input- and a temporal-attention mechanism, and are tested on medium and long-term time horizons.
arXiv Detail & Related papers (2023-06-30T18:08:25Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Development of Human Motion Prediction Strategy using Inception Residual
Block [1.0705399532413613]
We propose an Inception Residual Block (IRB) to detect temporal features in human poses.
Our main contribution is to propose a residual connection between input and the output of the inception block to have a continuity between the previously observed pose and the next predicted pose.
With this proposed architecture, it learns prior knowledge much better about human poses and we achieve much higher prediction accuracy as detailed in the paper.
arXiv Detail & Related papers (2021-08-09T12:49:48Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
We introduce a novel trajectory prediction model based on recurrent neural networks (RNN)
We then incorporate the trajectory prediction model into a decentralized model predictive control (MPC) framework for multi-robot collision avoidance.
arXiv Detail & Related papers (2021-02-10T11:11:08Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.