論文の概要: Minimizing Energy Consumption of Deep Learning Models by Energy-Aware
Training
- arxiv url: http://arxiv.org/abs/2307.00368v1
- Date: Sat, 1 Jul 2023 15:44:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 16:22:55.771912
- Title: Minimizing Energy Consumption of Deep Learning Models by Energy-Aware
Training
- Title(参考訳): エネルギー意識学習によるディープラーニングモデルのエネルギー消費最小化
- Authors: Dario Lazzaro, Antonio Emanuele Cin\`a, Maura Pintor, Ambra Demontis,
Battista Biggio, Fabio Roli, Marcello Pelillo
- Abstract要約: モデル学習におけるエネルギー消費の削減を目的とした勾配に基づくアルゴリズムであるEATを提案する。
エネルギーを考慮したトレーニングアルゴリズムであるEATは、分類性能とエネルギー効率のトレードオフを良くしてネットワークをトレーニングできることを実証する。
- 参考スコア(独自算出の注目度): 26.438415753870917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models undergo a significant increase in the number of
parameters they possess, leading to the execution of a larger number of
operations during inference. This expansion significantly contributes to higher
energy consumption and prediction latency. In this work, we propose EAT, a
gradient-based algorithm that aims to reduce energy consumption during model
training. To this end, we leverage a differentiable approximation of the
$\ell_0$ norm, and use it as a sparse penalty over the training loss. Through
our experimental analysis conducted on three datasets and two deep neural
networks, we demonstrate that our energy-aware training algorithm EAT is able
to train networks with a better trade-off between classification performance
and energy efficiency.
- Abstract(参考訳): ディープラーニングモデルは、所有するパラメータ数を大幅に増加させ、推論中により多くの操作を実行することになる。
この拡張はエネルギー消費の増加と予測遅延に大きく貢献する。
本研究では,モデル学習におけるエネルギー消費削減を目的とした勾配に基づくアルゴリズムであるEATを提案する。
この目的のために、$\ell_0$ノルムの微分可能な近似を利用し、トレーニング損失に対するスパースペナルティとして使用する。
3つのデータセットと2つの深層ニューラルネットワークを用いた実験分析により,本研究のエネルギアウェアトレーニングアルゴリズムeatは,分類性能とエネルギ効率のトレードオフによりネットワークを訓練できることを実証した。
関連論文リスト
- Revisiting DNN Training for Intermittently Powered Energy Harvesting Micro Computers [0.6721767679705013]
本研究では,エネルギー制約環境下でのディープニューラルネットワークに適した新しいトレーニング手法を紹介し,評価する。
本稿では,デバイスアーキテクチャとエネルギー可用性の変動性の両方に適応する動的ドロップアウト手法を提案する。
予備的な結果は、この戦略が5%未満の計算量を持つ最先端技術と比較して6~22%の精度向上をもたらすことを示している。
論文 参考訳(メタデータ) (2024-08-25T01:13:00Z) - Towards Physical Plausibility in Neuroevolution Systems [0.276240219662896]
人工知能(AI)モデル、特にディープニューラルネットワーク(DNN)の利用の増加は、トレーニングや推論における消費電力を増加させている。
本研究は機械学習(ML)におけるエネルギー消費の増大問題に対処する。
電力使用量をわずかに削減しても、大幅な省エネ、ユーザ、企業、環境に恩恵をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-01-31T10:54:34Z) - Uncovering Energy-Efficient Practices in Deep Learning Training:
Preliminary Steps Towards Green AI [8.025202812165412]
我々は、エネルギー消費を精度に等しい重要性の指標とみなし、無関係なタスクやエネルギー使用量を減らす。
持続可能性の観点から深層学習パイプラインの訓練段階について検討する。
ディープラーニングモデルをトレーニングするための革新的で有望なエネルギー効率のプラクティスを強調します。
論文 参考訳(メタデータ) (2023-03-24T12:48:21Z) - Energy Efficiency of Training Neural Network Architectures: An Empirical
Study [11.325530936177493]
ディープラーニングモデルの評価は、伝統的に精度、F1スコア、関連する指標などの基準に焦点を当ててきた。
このようなモデルを訓練するために必要な計算は、大きな炭素フットプリントを必要とする。
本研究では, DLモデルアーキテクチャと環境影響との関係を, エネルギー消費の観点から検討した。
論文 参考訳(メタデータ) (2023-02-02T09:20:54Z) - Energy-based Latent Aligner for Incremental Learning [83.0135278697976]
ディープラーニングモデルは、新しいタスクを漸進的に学習しながら、以前の知識を忘れる傾向があります。
この振る舞いは、新しいタスクに最適化されたパラメータ更新が、古いタスクに適したアップデートとうまく一致しない可能性があるため現れます。
ELI: インクリメンタルラーニングのためのエネルギーベースラテントアリグナーを提案する。
論文 参考訳(メタデータ) (2022-03-28T17:57:25Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
コンピュータビジョンと自然言語処理の分野における関連モデルについて検討する。
継続的な性能向上のために、これまで予想されていたよりもエネルギー消費の軟化が見られた。
論文 参考訳(メタデータ) (2021-09-12T09:40:18Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsityは、モバイル機器に適合する通常のネットワークのメモリフットプリントを減らすことができる。
ニューラルネットワークの要素を除去および追加するためのアプローチ、モデルの疎性を達成するための異なるトレーニング戦略、実際に疎性を利用するメカニズムについて説明する。
論文 参考訳(メタデータ) (2021-01-31T22:48:50Z) - Compute, Time and Energy Characterization of Encoder-Decoder Networks
with Automatic Mixed Precision Training [6.761235154230549]
モデル性能を犠牲にすることなく、混合精度トレーニングを活用することにより、トレーニング時間の大幅な改善が可能であることを示す。
ネットワークのトレーニング可能なパラメータの数は1549%増加し、4つのエンコード層を持つUNetのエネルギー使用量は63.22%増加した。
論文 参考訳(メタデータ) (2020-08-18T17:44:24Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。