論文の概要: Revisiting DNN Training for Intermittently Powered Energy Harvesting Micro Computers
- arxiv url: http://arxiv.org/abs/2408.13696v1
- Date: Sun, 25 Aug 2024 01:13:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:19:53.049830
- Title: Revisiting DNN Training for Intermittently Powered Energy Harvesting Micro Computers
- Title(参考訳): 断続的に電力を消費するマイクロコンピュータのためのDNNトレーニングの見直し
- Authors: Cyan Subhra Mishra, Deeksha Chaudhary, Jack Sampson, Mahmut Taylan Knademir, Chita Das,
- Abstract要約: 本研究では,エネルギー制約環境下でのディープニューラルネットワークに適した新しいトレーニング手法を紹介し,評価する。
本稿では,デバイスアーキテクチャとエネルギー可用性の変動性の両方に適応する動的ドロップアウト手法を提案する。
予備的な結果は、この戦略が5%未満の計算量を持つ最先端技術と比較して6~22%の精度向上をもたらすことを示している。
- 参考スコア(独自算出の注目度): 0.6721767679705013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of Deep Neural Networks in energy-constrained environments, such as Energy Harvesting Wireless Sensor Networks, presents unique challenges, primarily due to the intermittent nature of power availability. To address these challenges, this study introduces and evaluates a novel training methodology tailored for DNNs operating within such contexts. In particular, we propose a dynamic dropout technique that adapts to both the architecture of the device and the variability in energy availability inherent in energy harvesting scenarios. Our proposed approach leverages a device model that incorporates specific parameters of the network architecture and the energy harvesting profile to optimize dropout rates dynamically during the training phase. By modulating the network's training process based on predicted energy availability, our method not only conserves energy but also ensures sustained learning and inference capabilities under power constraints. Our preliminary results demonstrate that this strategy provides 6 to 22 percent accuracy improvements compared to the state of the art with less than 5 percent additional compute. This paper details the development of the device model, describes the integration of energy profiles with intermittency aware dropout and quantization algorithms, and presents a comprehensive evaluation of the proposed approach using real-world energy harvesting data.
- Abstract(参考訳): Energy Harvesting Wireless Sensor Networksのようなエネルギー制約のある環境におけるDeep Neural Networksの展開は、主に電力可用性の断続的な性質のために、ユニークな課題を提示している。
これらの課題に対処するために,本稿では,DNNがこのような状況下で活動するのに適した,新しいトレーニング手法を紹介し,評価する。
特に,エネルギー回収シナリオに固有の,デバイスアーキテクチャとエネルギー可用性の変動性の両方に適応する動的ドロップアウト手法を提案する。
提案手法では,ネットワークアーキテクチャのパラメータとエネルギー回収プロファイルを組み込んだデバイスモデルを用いて,トレーニング期間中のドロップアウト率を動的に最適化する。
予測されたエネルギー利用率に基づいてネットワークのトレーニングプロセスを調整することにより、省エネだけでなく、電力制約下での持続的な学習と推論能力も確保できる。
予備的な結果は、この戦略が、5%未満の計算量を持つ最先端技術と比較して6~22%の精度向上をもたらすことを実証している。
本稿では, デバイスモデルの開発について詳述し, 間欠性を考慮したドロップアウト・量子化アルゴリズムとエネルギープロファイルの統合について述べるとともに, 実世界のエネルギー回収データを用いて提案手法の総合評価を行う。
関連論文リスト
- Energy-Aware Dynamic Neural Inference [39.04688735618206]
エネルギーハーベスターと有限容量エネルギーストレージを備えたオンデバイス適応型推論システムを提案する。
環境エネルギーの速度が増加するにつれて、エネルギー・信頼性を考慮した制御方式は精度を約5%向上させることが示されている。
我々は、信頼性を意識し、認識できないコントローラを理論的に保証する原則的なポリシーを導出する。
論文 参考訳(メタデータ) (2024-11-04T16:51:22Z) - Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
フェデレートラーニング(FL)では、エッジデバイスがローカルトレーニングを実行し、パラメータサーバと情報を交換する必要がある。
実用FLシステムにおける重要な課題は、バッテリ限定エッジ装置の急激なエネルギー枯渇である。
FLシステムにエネルギー回収技術を適用し, エッジデバイスを連続的に駆動する環境エネルギーを抽出する。
論文 参考訳(メタデータ) (2024-05-17T03:41:40Z) - Measuring the Energy Consumption and Efficiency of Deep Neural Networks:
An Empirical Analysis and Design Recommendations [0.49478969093606673]
BUTTER-Eデータセットは、BUTTER Empirical Deep Learningデータセットの拡張である。
このデータセットは、データセットのサイズ、ネットワーク構造、エネルギー使用の複雑な関係を明らかにする。
本稿では,ネットワークサイズ,コンピューティング,メモリ階層を考慮した,単純かつ効率的なエネルギーモデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T00:27:19Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
EHエッジインテリジェンスシステムにおいて,エネルギー適応型動的早期退避を提案する。
提案手法は, サンプルごとの最適計算量を決定する, エネルギー対応のEEポリシーを導出する。
その結果, エネルギーに依存しない政策と比較して, 精度は25%, サービスレートは35%向上した。
論文 参考訳(メタデータ) (2023-05-23T14:17:44Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated Edge Learning (FEEL) は次世代無線ネットワークにおいて有望な分散学習技術である。
FEELは、モデルトレーニングラウンド中に消費される電力により、エネルギー制約された参加機器の寿命を大幅に短縮する可能性がある。
本稿では,FEELラウンドにおける計算および通信エネルギー消費を最小化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T13:34:40Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Energy-Based Processes for Exchangeable Data [109.04978766553612]
エネルギーベースモデルを交換可能なデータに拡張するために、エネルギーベースプロセス(EBP)を導入する。
EBPの鍵となる利点は、集合上のより柔軟な分布を、その濃度を制限することなく表現できることである。
本研究では,多種多様なタスクにおける最先端性能を実演する電子掲示板の効率的な訓練手順を開発する。
論文 参考訳(メタデータ) (2020-03-17T04:26:02Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。