Seeing is not Believing: An Identity Hider for Human Vision Privacy Protection
- URL: http://arxiv.org/abs/2307.00481v5
- Date: Fri, 23 Aug 2024 09:23:05 GMT
- Title: Seeing is not Believing: An Identity Hider for Human Vision Privacy Protection
- Authors: Tao Wang, Yushu Zhang, Zixuan Yang, Xiangli Xiao, Hua Zhang, Zhongyun Hua,
- Abstract summary: We propose an effective identity hider for human vision protection.
It can significantly change appearance to visually hide identity while allowing identification for face recognizers.
The proposed identity hider achieves excellent performance on privacy protection and identifiability preservation.
- Score: 16.466136884030977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Massive captured face images are stored in the database for the identification of individuals. However, these images can be observed unintentionally by data managers, which is not at the will of individuals and may cause privacy violations. Existing protection schemes can maintain identifiability but slightly change the facial appearance, rendering it still susceptible to the visual perception of the original identity by data managers. In this paper, we propose an effective identity hider for human vision protection, which can significantly change appearance to visually hide identity while allowing identification for face recognizers. Concretely, the identity hider benefits from two specially designed modules: 1) The virtual face generation module generates a virtual face with a new appearance by manipulating the latent space of StyleGAN2. In particular, the virtual face has a similar parsing map to the original face, supporting other vision tasks such as head pose detection. 2) The appearance transfer module transfers the appearance of the virtual face into the original face via attribute replacement. Meanwhile, identity information can be preserved well with the help of the disentanglement networks. In addition, diversity and background preservation are supported to meet the various requirements. Extensive experiments demonstrate that the proposed identity hider achieves excellent performance on privacy protection and identifiability preservation.
Related papers
- StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
We propose StableIdentity, which allows identity-consistent recontextualization with just one face image.
We are the first to directly inject the identity learned from a single image into video/3D generation without finetuning.
arXiv Detail & Related papers (2024-01-29T09:06:15Z) - HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection [60.63915939982923]
Face de-identification is a practical way to solve the identity protection problem.
The existing facial de-identification methods have revealed several problems.
We present a High-Fidelity and Occlusion-Robust De-identification (HFORD) method to deal with these issues.
arXiv Detail & Related papers (2023-11-15T08:59:02Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Graph-based Generative Face Anonymisation with Pose Preservation [49.18049578591058]
AnonyGAN is a GAN-based solution for face anonymisation.
It replaces the visual information corresponding to a source identity with a condition identity provided as any single image.
arXiv Detail & Related papers (2021-12-10T12:58:17Z) - FICGAN: Facial Identity Controllable GAN for De-identification [34.38379234653657]
We present Facial Identity Controllable GAN (FICGAN) for generating high-quality de-identified face images with ensured privacy protection.
Based on the analysis, we develop FICGAN, an autoencoder-based conditional generative model that learns to disentangle the identity attributes from non-identity attributes on a face image.
arXiv Detail & Related papers (2021-10-02T07:09:27Z) - A Systematical Solution for Face De-identification [6.244117712209321]
In different tasks, people have various requirements for face de-identification (De-ID)
We propose a systematical solution compatible for these De-ID operations.
Our method can flexibly de-identify the face data in various ways and the processed images have high image quality.
arXiv Detail & Related papers (2021-07-19T02:02:51Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.