Safe Exploration in Model-based Reinforcement Learning using Control
Barrier Functions
- URL: http://arxiv.org/abs/2104.08171v1
- Date: Fri, 16 Apr 2021 15:29:58 GMT
- Title: Safe Exploration in Model-based Reinforcement Learning using Control
Barrier Functions
- Authors: Max H. Cohen and Calin Belta
- Abstract summary: We develop a novel class of CBFs that retain the beneficial properties of CBFs for developing minimally-invasive safe control policies.
We show how these LCBFs can be used to augment a learning-based control policy so as to guarantee safety and then leverage this approach to develop a safe exploration framework.
- Score: 1.005130974691351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the problem of developing an approximate dynamic
programming (ADP) framework for learning online the value function of an
infinite-horizon optimal problem while obeying safety constraints expressed as
control barrier functions (CBFs). Our approach is facilitated by the
development of a novel class of CBFs, termed Lyapunov-like CBFs (LCBFs), that
retain the beneficial properties of CBFs for developing minimally-invasive safe
control policies while also possessing desirable Lyapunov-like qualities such
as positive semi-definiteness. We show how these LCBFs can be used to augment a
learning-based control policy so as to guarantee safety and then leverage this
approach to develop a safe exploration framework in a model-based reinforcement
learning setting. We demonstrate that our developed approach can handle more
general safety constraints than state-of-the-art safe ADP methods through a
variety of numerical examples.
Related papers
- Towards Safe Load Balancing based on Control Barrier Functions and Deep
Reinforcement Learning [0.691367883100748]
We propose a safe learning-based load balancing algorithm for Software Defined-Wide Area Network (SD-WAN)
It is empowered by Deep Reinforcement Learning (DRL) combined with a Control Barrier Function (CBF)
We show that our approach delivers near-optimal Quality-of-Service (QoS) in terms of end-to-end delay while respecting safety requirements related to link capacity constraints.
arXiv Detail & Related papers (2024-01-10T19:43:12Z) - Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian
Learning [33.75998206184497]
We develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method.
Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression model.
For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control.
arXiv Detail & Related papers (2023-07-03T08:16:01Z) - On the Optimality, Stability, and Feasibility of Control Barrier
Functions: An Adaptive Learning-Based Approach [4.399563188884702]
Control barrier function (CBF) and its variants have attracted extensive attention for safety-critical control.
There are still fundamental limitations of current CBFs: optimality, stability, and feasibility.
We propose Adaptive Multi-step Control Barrier Function (AM-CBF), where we parameterize the class-$mathcalK$ function by a neural network and train it together with the reinforcement learning policy.
arXiv Detail & Related papers (2023-05-05T15:11:28Z) - Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning [3.9821399546174825]
We introduce a deep reinforcement learning framework for safe decision making in uncertain environments.
We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems.
In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.
arXiv Detail & Related papers (2023-01-30T00:37:06Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.